
MutantX-S: Scalable Malware Clustering Based on Static Features

Xin Hu, Kang G. Shin
University of Michigan, Ann Arbor

Sandeep Bhatkar, Kent Griffin
Symantec Research Labs

ABSTRACT
The current lack of automatic and speedy labeling of a large
number (thousands) of malware samples seen everyday de-
lays the distribution of malware signatures, leading to a low
detection rate of new malware samples in the wild. In this
paper, we design, implement and evaluate a novel, scalable
framework, calledMutantX-S, that can efficiently cluster a
large number of samples into families based on programs’
static features, i.e., code instruction sequences.MutantX-S is
a unique combination of several novel techniques to address
the practical challenges of malware clustering. Specifically,
it exploits the instruction format of x86 architecture and rep-
resents a binary program as a sequence of opcodes, facil-
itating the extraction ofN -gram features. It also exploits
the hashing trick recently developed in the machine learn-
ing community to reduce the dimensionality of the extracted
feature vectors, thus significantly lowering the memory and
computation costs of clustering. Our comprehensive evalu-
ation on aMutantX-S prototype using a database of more
than 100,000 malware samples has shown its ability to cor-
rectly cluster over 80% of input samples within 2 hours,
achieving a good balance between accuracy and scalability.
Applying MutantX-S on malware samples created at dif-
ferent times, we also demonstrate thatMutantX-S achieves
high accuracy (around 0.75–0.8) in predicting family labels
for unknown malware.

1. INTRODUCTION
According to the Symantec’s latest Internet Threat

Report, 403 million new variants of malware were cre-
ated in 2011, a 41% increase from 2010. This expo-
nential growth of malware samples has created a ma-
jor challenge for anti-virus (AV) companies: how to ef-
ficiently process this huge influx of new samples and
accurately labels them? Typically, AV companies re-
ceive several thousands of suspicious samples everyday.
It is practically impossible to manually analyze such a
huge number of samples, leaving a large fraction of sam-
ples unlabeled and hence delaying the signature distri-
bution. One possible solution to this is to automatically
cluster malware samples and assign them labels accord-
ing to their similarities. The intuition behind this is
that malware programs bearing significant similarities
are likely to have been derived from the same code base,
and hence from the same malware family. One can thus
group similar samples into a cluster and label them with
high accuracy by analyzing only a few representative
samples. Moreover, the label of a new sample can be

automatically derived if it is determined to belong to
an existing cluster. In this paper, we design, implement
and evaluate MutantX-S, a novel and scalable system,
that can efficiently cluster a large number of malware
samples into families based on their static features, i.e.,
code instruction sequences.

Most existing malware clustering/classification sys-
tems are based on dynamic behavioral features. These
dynamic-analysis systems operate by running malware
samples in virtual or sandboxed environments, moni-
toring their execution and extracting their run-time be-
havior in terms of API or system call traces [5, 6, 22].
The major benefit of using dynamic behavioral features
is that they are less susceptible to mutation schemes
frequently employed by malware writers to avoid static
analysis, e.g., such as run-time packers or binary obfus-
cation. Albeit very useful in practice, approaches based
on dynamic behavioral features also suffer from several
limitations. First, they may have only limited cover-
age of an application’s behavior, failing to reveal the
entire capabilities of a given malware program. This
is because for a particular execution run, a dynamic
analysis can only capture API or system call traces
corresponding to the code path that was taken during
that particular execution. Different code paths may be
taken in different runs, depending on the program’s in-
ternal logics and/or external environments. Also, mal-
ware often include triggers in their programs and ex-
hibit an interesting behavior only when certain condi-
tions are met. Typical examples include bot programs
that wait for commands from their botmasters, and
malware programs designed to launch attacks on a cer-
tain date. These trigger-based malware generate very
few run-time traces and thus cannot be captured by dy-
namic analysis. Second, dynamic analysis is inherently
resource-intensive and hence doesn’t scale well. To pro-
cess the sheer number of malware samples collected ev-
eryday with limited resource, a dynamic-analysis sys-
tem can execute and monitor each sample only for a
short period of time, e.g., a couple of minutes. Unfor-
tunately, this time is often too short for typical malware
programs to reveal all their true behavior.

In this paper, we present MutantX-S, a new and prac-
tical system that exploits static features of code in-
struction sequences for efficient and automatic malware
clustering and labeling. MutantX-S is motivated by
the common observation that a large portion of to-
day’s malicious programs are file-level variations of a

1

small number of malware families and tend to share
similar instruction sequences in their binaries. Analy-
sis of static features of malware offers several unique
benefits. First, it has the potential to cover all possi-
ble code paths of a (malicious) program, yielding more
accurate representations of the entire functionalities of
the programs. Moreover, approaches based on static
features are much more scalable than their dynamic
counterparts, as they do not require resource-intensive
and time-consuming monitoring of malicious programs.
This is particularly important for AV companies to pro-
cess a rapidly-increasing number of new malware sam-
ples. Unfortunately, the static-feature-based approaches
are not without limitations of their own. It is well-
known that they suffer from run-time packing and ob-
fuscation. Therefore, the goal of MutantX-S is not to
replace existing dynamic-behavior-based systems, but
to complement them to achieve higher clustering accu-
racy and better coverage of malware programs.
MutantX-S features a unique combination of tech-

niques to address the deficiencies of static malware anal-
ysis. First, it employs an efficient encoding mechanism
that exploits the IA32 instruction format to encode
malware binaries into a opcode sequence, facilitating
the extraction of N -gram features. Second, it applies
a hashing-trick on the extracted N -gram features that
help the clustering algorithm handle very high dimen-
sional features. Finally, it tailors a generic unpacking
technique to handle commonly-seen run-time packers so
that the clustering algorithms may be applied to a larger
set of malware samples. We have successfully imple-
mented a fully-automated prototype of MutantX-S and
evaluated its performance using a database of more than
100,000 distinct malicious programs. Our evaluation
results demonstrate that MutantX-S can effectively cre-
ate clusters corresponding to malware families which
allows accurate prediction of new malware labels and
reduce/remove the manual analysis effort, thereby en-
abling faster response to new malware threats.

The rest of the paper is organized as follows. Sec-
tion 2 surveys previous work related to malware analy-
sis. Section 3 briefly describes the architecture of MutantX-S fol-
lowed by elaboration of each component of MutantX-S in-
cluding the unpacking (Section 4), instruction feature
extraction (Section 5) and clustering (Section 6). The
comprehensive performance evaluation of MutantX-S is
presented in Section 7. Section 8 discusses the limi-
tation and potential improvement of MutantX-S, and
Section 9 concludes the paper.

2. RELATED WORK
Malware pose one of the severest threats to com-

puter systems and the Internet. As a result, automatic
malware clustering and classification have recently at-
tracted considerable attention. Various schemes have

been proposed to tackle this problem based on the dy-
namic behavior and static features of malware.

Dynamic-analysis approaches have the major benefit
of handling packed and obfuscated malware samples by
executing malware programs in a virtual or sandboxed
environment and collecting their behavior in terms of
system or API calls. Lee and Mody [16] proposed use
of a sequence of events (e.g., registry and file system
modifications) to cluster similar malware programs and
assigned the same class label to a new malware sample
as that of its nearest neighbor in a set of known sam-
ples. Rieck et al. [21] converted the frequency of run-
time behavior, such as copy file and create processes,
into feature vectors and applied SVM (Support Vec-
tor Machine) to learn and classify unknown samples to
their closest kin. One limitation of these approaches,
as noted in [6], is that it uses supervised learning tech-
niques and thus requires labeled training sets. Later,
Bailey et al. [5] applied a hierarchical clustering al-
gorithm to group similarly-behaving malware samples.
Unfortunately, the complexity of this clustering algo-
rithm is O(n2), limiting its applicability only to a small
number of samples. To address this problem, Bayer et
al. [6] and Rieck et al. [22] developed different methods
to scale the clustering algorithms. Bayer et al. [6] ap-
plies locality-sensitive hashing (LSH) to efficiently com-
pute an approximate hierarchical clustering with a sig-
nificantly smaller number of distance computations. By
contrast, Rieck et al. [22] developed a prototype-based
clustering algorithm that reduces the runtime complex-
ity by performing clustering only on representative sam-
ples (i.e., prototypes). Comparing to LSH clustering, a
prototype-based algorithm facilitates the analysis of be-
havior groups because each prototype represents a par-
ticular malware group [22]. In MutantX-S, we adopt the
same prototype-based algorithm as in [22] because of its
efficiency and explicit expression of malware features.

Static analysis, on the other hand, uses features ex-
tracted directly from malware binaries as the basis for
analysis. Christodorescu et al. [7] extracted unique ma-
licious patterns from disassembled malware that are re-
silient to obfuscation. Wicherski [28] utilizes static fea-
tures from PE headers, e.g., raw size, entry point, im-
port table, etc., to group similar malware. Karim et
al. [12] took a different approach and studied the mal-
ware evolution by creating phylogeny models of mal-
ware families based on N -gram and N -perm on assem-
bly instructions. Similar features have also been used
in [14] to validate various supervised learning meth-
ods, such as naive Bayes, decision trees, SVM, etc.
MutantX-S falls into the static-analysis category since it
relies on (malware) features extracted from the malware
code instructions. The main difference of MutantX-S from
previous approaches is its unique combination of tech-
niques that ensures the scalability to large malware

2

datasets. Although malware sets of a similar size have
been studied with dynamic-behavior-based clustering
[6], static analysis is still necessary and sometimes more
advantageous since it does not suffer from the limited
coverage of dynamic analysis. Another system similar
to MutantX-S is BitShred [11] which also focuses on the
scalability of malware comparison and triage on a large
scale. BitShred developed a fast code-comparison algo-
rithm based on hashes of byte sequences in code section
and made use of distributed computing resources, i.e.,
Hadoop and MapReduce to achieve a high throughput
in binary comparison and good scalability.

3. ARCHITECTURE
Figure 1 shows an overview of MutantX-S. At a high

level, MutantX-S takes a set of malicious or suspicious
program samples as input and extracts their features us-
ing static analysis to avoid the computational overhead
and maximize code coverage. Specifically, MutantX-S first
uses existing tools (e.g., PeID [1], TrID [19], SymPack1)
to identify malware files that have been processed by
the binary packing/encryption tools such as UPX [26],
ASPack[4], and other customized packers. These files
will be unpacked with a generic unpacking technique
tailored for MutantX-S. Together with samples that are
in their original binary (not packed), they are disas-
sembled to extract their code instructions. These pre-
processing steps ensure that MutantX-S can success-
fully extract the features inherent to malware families
without influence of encryption or compression. After
their pre-processing, all malware samples are passed to
the second component and processed with three steps
to extract their representative features: (1) Instruc-
tion Encoding for converting each instruction to a se-
quence of encoded operation codes that capture the un-
derlying semantics of the programs, (2) N-gram analy-
sis for constructing feature vectors that allow computa-
tion of program similarities, and (3) Hashing Trick for
compressing the feature vectors, significantly improv-
ing the speed of similarity computation while incurring
only a small penalty in clustering accuracy. Finally, a
prototype-based clustering algorithm is applied on the
set of compressed feature vectors and partitions sam-
ples into different clusters, each representing a group of
similar malicious programs.

4. GENERIC UNPACKING ALGORITHM
Due to its simplicity and effectiveness, run-time pack-

ing is one of the most commonly used techniques by
malware writers to circumvent anti-virus detection. More
than 80% of malware programs are estimated to be
packed by some type of packers [9]. A typical packer
like UPX works as follows. UPX first compresses all

1An in-house tool developed inside Symantec

the code and data sections of a portable executable
(PE) binary2 into a single section. Then, it creates
a new PE binary containing the compressed data fol-
lowed by the unpack code. The entry point in the new
PE header is altered to point to the unpacker code such
that the unpack code will first be executed when the
packed program runs. The unpack code decompresses
the original program codes into memory and then jump
to the first instruction of the restored codes (i.e., the
original entry point) to resume execution. This packing
process enables malware programs to disguise their ma-
licious instructions as random-looking data while keep-
ing the original functionality intact. Since all static
analysis tools including MutantX-S rely on features ex-
tracted from original instructions, it is imperative for
MutantX-S to handle packing correctly and efficiently.

While there exist unpacking tools such as UPX itself,
ArmaGedoon, etc., they are often targeted specifically
at one or a few packers. As more packers appear in the
wild, the cost of manually reverse-engineering packers
and continually updating unpacking tools is expected to
grow over time. In addition, unpacking tools often have
to perform expensive processing to ensure that the un-
packed program can be successfully executed (e.g., the
PE headers must be correctly specified and import ta-
ble has to be reconstructed), making them too slow to
be used for processing large number of malware sam-
ples. MutantX-S , on the other hand, has no need to
guarantee the executabilty of the unpacked programs as
long as the original instructions can be inspected and
features extracted. MutantX-S thus tailors a generic
unpacking mechanism to meet the particular need for
malware clustering and improves its efficiency. The ba-
sic idea is to exploit the inherent property of the un-
packing procedure, i.e., a packed binary has to write
the unpacked code into some memory space and trans-
fer control to the modified memory locations to con-
tinue execution. By continual monitoring of memory
access, we can learn that some form of unpacking, self-
modification or on-the-fly code generation instructions
occurs if the program execute a memory address af-
ter writing something into the address. These written-
then-executed memory locations are likely to contain
the original program codes and thus are the targets to
be analyzed by MutantX-S.

The unpacking component of MutantX-S exploits the
physical non-execution (NX) support in modern x86
CPUs and Windows OS to track memory page sta-
tus. It consists of a kernel driver responsible for track-
ing system calls and a user-level component that is
injected as a remote thread into a program’s address
space. The unpacking component of MutantX-S does
two things: (1) runs the packed binary and dumps the

2PE is the executable file format used by the Windows Op-
erating Systems

3

Figure 1: A system overview of MutantX-S

memory image of the running process at an appropri-
ate time when the binary is likely to finish unpacking
(hence the dumped memory contains the original in-
structions), and (2) determine the correct original entry
point (OEP) for the dumped image. Finding the cor-
rect OEP is critical for program disassembly and fea-
ture extraction, because a wrong entry point may cause
a disassembler to miss all the instructions between the
original and the misidentified entry points (if there is
no other reference to this portion of code). In addi-
tion, if the entry point is incorrectly set in the middle
of an instruction, the disassembler will fail or generate
completely wrong assembly codes.

The details of the unpacking process are summarized
here:

1. MutantX-S loads the packed program into mem-
ory, suspends its execution and inject the user-
level hooking DLL into the process’ memory space.
It marks all the memory pages of the loaded pro-
gram as executable but non-writable, and resumes
its execution.

2. During the execution, when the unpacker attempts
to write unpacked codes into memory, a write ex-
ception will occur on the non-writable page. MutantX-S marks
the page as dirty and changes its permission to
writable but non-executable.

3. When the unpacker jumps to the the newly-generated
code for execution (e.g. after finishing unpack-
ing), the non-executable permission on these pages
causes an execution exception. MutantX-S inter-
cepts such exceptions and records memory addresses
where the exceptions had occurred. For simple
unpackers such as UPX that first unpack the en-
tire program and then jump to the restored pro-
gram for execution, the memory address where
the exception occurs is the OEP (original entry
point) that we want to identify. However, this is
not necessarily true for more sophisticated packers
(e.g., self-modifying code that may rewrite to the
same memory location). Therefore, MutantX-S re-
moves the write permission from these memory
pages again, grants execution privilege and con-
tinues execution. MutantX-S also monitors dy-
namic allocation of memory pages and removes

their write permission to track unpacking on these
pages.

4. MutantX-S dumps the process memory image ei-
ther at the end of program execution after a cer-
tain period of time. The basic intuition behind
this is that after the program has been running
for a sufficient amount of time (e.g., 30 seconds
to 1 minute), it is fairly safe to assume that the
program has finished unpacking and the original
codes are contained in the memory.

Attaching a new PE header to the dumped memory
image, MutantX-S creates a valid PE file from which
a standard disassembler can disassemble instructions.
However, as mentioned earlier, the major challenge for
creating a valid PE file is to identify the correct value
of the entry point in the PE hader. Previous unpack-
ing tool often use the same W ⊕ X policy to address
this problem by assuming that the packer will unpack
the entire program in the memory and then execute the
newly generated instructions. As a result, the entry
point is simply the start address of the dirty memory
page where the first execution exception occurs. Unfor-
tunately, this is only true for simple packers like UPX.
As adversaries become increasingly sophisticated, var-
ious evasion schemes have been developed to compli-
cate the detection of OEP. A typical method is to fake
end-of-unpacking by writing rouge instructions into a
reserved memory page, transfer control to it, and jump
back to the unpacker code. This creates an illusion to
unpacking tools that unpacking has ended, and con-
cludes with a wrong address for the entry point. More
advanced unpackers uses incremental unpacking that
decrypts only part of the payload and executes them
before decrypting more instructions. In such cases, de-
tecting the first execution exception is not enough be-
cause only part of the original program is visible. To ad-
dress these problem, MutantX-S develops a new heuris-
tic called LMFE (Last Modification First Execution).

The idea is to keep track of time when the last write
exception and a subsequent execution exception occur
on each memory page, so MutantX-S can identify the
unpacker’s attempts to write to the same memory page
multiple times, in which case, the previous modifica-
tion and execution on the page are likely to be spu-
rious. More specifically, for each memory page, Mu-

4

Algorithm 1 MutantX-S unpacking algorithm
1: Input: A packed binary program B

2: Output: a reconstructed PE file containing unpacked pro-
gram codes

3: STEP 1:

4: Load the packed program into memory
5: for all p in the program’s memory pages do

6: Permission(p)| = W̃//removewritepermission
7: end for

8:
9: STEP 2:

10: while B is running and Truntime < Tthresh do

11: a: The address of the page fault
12: t: The page fault type t ∈ {WRITE, EXECUTE}
13: p ← Page(a)
14: if t = WRITE then

15: Permission(p)| = (W |X̃) // Writable but non-
executable

16: last written(p) ← current time
17: end if

18: if t = EXECUTE then

19: Permission(p)| = (W̃ |X) //non-writable but exe-
cutable

20: last exec(p) ← current time
21: addr exec(k) ← a
22: end if

23: end while

24:
25: STEP 3:

26: Dump process memory
27: reconstruct B

′ by setting OEP to be addr exec(k) where:
28: k = arg mink(last exec(k) > max(last written(i))
29: return B

′

tantX keeps a record of it 1) last modification time
(i.e., a write exception occurred on the page), denoted
as last written; 2) last execution exception time, de-
noted as last exec; and 3) the address addr exec where
the exception had occurred. At any point of execution,
there are three types of memory pages.

Type I: memory pages that have valid last written
and last exec, i.e., pages that are both modified and
executed.

Type II: memory pages that have valid last written
but not last exec, i.e., pages that are modified but not
executed. They could either be page containing pure or
code pages that have not yet been executed.

Type III: memory pages that have neither valid
last written nor valid last exec. These could be ini-
tialized data-section pages or unpacker-code pages.

Essentially, type-I memory pages are those that hold
the unpacked instructions and thus contain the OEP.
When dumping the process memory, MutantX-S uses
the following algorithm to pinpoint the correct OEP.
Let P (i), i = 1..n represent all type-I memory pages
of the packed program and last written(i), last exec(i)
and addr exec(i) represent the time of the last write ex-
ception, last execution exception and address where the
exception occurs for page P (i), respectively. Then, the
OEP is addr exec(k) in the memory page P (k) where

k = arg min
k

(last exec(k) > max(last written(i)) (1)

where i = 1..n. In other words, P (k) is the first memory
page that is executed after all type-I memory pages have
been written. Below we show that MutantX-S is able
to find the correct OEP (i.e. addr exec(k)) even when
the packers try to fool the MutantX-S using spurious
write-and-execute sequences or multi-layer packing.

Proposition. For k satisfying Eq. (1), addr exec(k)
is the correct OEP of the original program no matter
whether the program is packed with simple packers or
more advanced packers that fake end of unpacking.

Proof. Let us first look at a simple packer like UPX
that restores the entire program into memory before
transferring control to it. Let P (j), j = 1..m denote
memory pages where the unpacker writes the original
program after decryption. Without loss of generality,
we can assume that the contents are written sequen-
tially from P (1) to P (k), meaning that last written(1) <
last written(2) < . . . < last written(m). When the
packer finishes unpacking and starts executing the re-
stored program by jumping to the OEP, an execution
exception will first occur on the memory page P (k) that
contains the OEP, i.e., last exec(k) > last written(m)
and last exec(k) < last exec(j)∀j 6= k. As a result,
addr exec(k) is the correct OEP.

Second, assume a more advanced packer with the
following spurious unpacking sequence: it writes ar-
bitrary instructions into some memory page, executes
them and, at the end of execution, returns to the un-
packer code. Such a routine may be called multiple
times during the whole unpacking process. As a re-
sult, an unpacking tool will fail if it assumes the end-
of-unpacking at the first (or first few) execution ex-
ception. MutantX-S is resilient to this type of eva-
sion by enforcing the invariant that the execution ex-
ception on the OEP must succeed all the write ex-
ceptions. For example, when the spurious unpacking
routing touches memory page P (s), MutantX-S records
last exec(s) and marks P (s) as executable but non-
writable. Then, the unpacker resumes the normal un-
packing and writes more decrypted instructions to mem-
ory page P (t) (t could be any memory page including
s). This creates a new write exception on P (t) at times-
tamp last written(t). Note that because last exec(s) <
last written(t), MutantX-S determines s to not contain
the OEP. In contrast, after the packer finishes unpack-
ing and transfers control to the real OEP, the execution
exception satisfies Eq. (1). By keeping addr exec up-to-
date and pointing to a valid instruction, MutantX-S is
able to recognize the real OEP accurately. Same ar-
guments hold for multi-layer packing because the write
exceptions of code pages will always precede the exe-

5

cutable exceptions caused by jumping to the OEP.

With the correct OEP identified, MutantX-S attaches
a new PE header to the dumped the memory images.
The correct OEP ensuring a proper starting point for
the disassembler and the dumped memory image con-
tains the original unpacked programs. The whole pro-
cess is summarized in Algorithm 1.

5. FEATURE EXTRACTION

Figure 2: x86 instruction format

Given the reconstructed (unpacked) malware programs,
MutantX-S uses the IDA Pro disassembler 3 to disas-
semble them down into a sequence of machine instruc-
tions that are then used for feature extraction. The
key step in MutantX-S is the comparison of similari-
ties between malware samples based on the disassem-
bled instruction sequences (e.g., Move EAX, EBX, cmp
eax, 1, ..). The main challenge in similarity compari-
son lies in handling the variations of machine instruc-
tions. Malware often undergo changes for many rea-
sons, such as mutation, polymorphism, and obfusca-
tion where instruction sequences that are semantically
equivalent are used to replace each other. Hence, ensur-
ing exactness in comparing instructions will not toler-
ate any variation in the syntax. At the other extreme,
correctness is compromised if all forms of variation are
tolerated. MutantX-S strikes a balance between these
two extremes by exploiting the x86 instruction format
(Fig. 2) and uses the opcode as a succinct representa-
tion of the instruction semantics.

Using opcodes—instead of other features used in pre-
vious work such as control flow graphs, binary sequences
or mnemonic sequences—offers several benefits. First,
opcodes generalize well to represent variants of a mal-
ware family. Malware samples in the same family are
often derived from the same code base and thus share
similarities in their instructions. However, due to re-
linking, rebinding and rebasing, the operands (e.g., reg-
isters, memory addresses) of instructions tend to change
across the variants. Using opcodes and ignoring the
operands (i) make MutantX-S more resilient to low-level
mutations while providing a meaningful characteriza-
tion of semantics and (ii) reflect the functionality of the
malware programs. Second, observing the variability of
3the de-facto disassembler for the analysis of hostile code

operands, previous approaches instead use mnemonic
sequences (e.g., mov, push) to represent the instruc-
tion functionalities. When testing MutantX-S, we dis-
cover that the opcode sequence offers better represen-
tation of instruction semantics. Mnemonics sometimes
overly generalize the underlying CPU operations, caus-
ing many different instructions (or instructions with dis-
tinct semantics) to appear similar. To illustrate this,
consider all the instructions in Table 1. Although all
of them have the same mnemonic (i.e., mov), the un-
derlying functionalities are drastically different. For in-
stance, moving a value to a control register or debug of-
ten indicates a critical OS operation, such as interrupt
control, switching addressing mode or enable/disable
debuggin, etc., which should not be treated same as
moving a value between one register and another. Ide-
ally, moving data from memory to a register (memory
load operation) should be considered as a distinct op-
eration from that of moving from a register to mem-
ory (memory store operation) too. Unfortunately, using
mnemonics would cause all these distinct instructions to
be represented with a single feature (i.e., mov), which
may lead to an accidental similarity between code se-
quences. As illustrated in Figure 3, On the other hand,
features based on opcode provide higher distinguishabil-
ity between semantically different instructions and thus
better accuracy in clustering.

Opcode Instruction Description

89 MOV r/m32, r32 Move from reg to mem/reg
8B MOV r32, r/m32 Move from mem/reg to reg
B8 MOV r32, imm32 Move immediate val to reg
0F 20 MOV r32, CR0-CR4 Move from control reg to reg
0F 22 MOV CR0-CR4,r32 Move from reg to control reg
0F 21 MOV r32, DR0-DR7 Move from debug reg to reg
0F 23 MOV DR0-DR7,r32 Move from reg to debug reg

Table 1: Opcodes provide fine-grained represen-
tations of instruction semantics (reg: register,
mem: memory)

Figure 3: Two code pieces with completely dif-
ferent semantics share same mnemonic represen-
tation (i.e., move, cmp, jnz). However, they can
be differentiated by their opcode representation:
”0F 21 3D 75” vs ”8B 3D 75”

With this encoding scheme, a program can be rep-
resented as a sequence of encoded opcodes (Fig. 4).
MutantX-S then uses the standard N -gram analysis
to characterize the content of a malware program, i.e.,
moving a fixed-length window over the sequence and

6

consider a subsequence of length N at each position.
The resulting N -gram of opcodes reflects short instruc-
tion patterns and implicitly captures the underlying
program semantics. Then MutantX-S constructs a fea-
ture vector vector V in an |S|-dimensional vector space
(|S| = |O|N where O is the set of all possible opcodes) .
Each dimension of V is the number of occurrence of one
particular opcode N -gram. Then MutantX-S can geo-
metrically caculate the similarity between two malware
programs (m, v) as the Euclidean distance between
their feature vectors in the vector space: d(m,n) =
‖Vm−Vn‖ =

√
∑

i=1 |S|(Vm(i) − Vn(i))2. Compared to
the other similarity metrics (e.g., locality-based hash-
ing), geometric assessment of similarity in the vector
space provides the benefit of explicit feature representa-
tion [22] where the importance or contribution of each
N -gram in clustering similar malware can be traced
back to its original code patterns. For N -grams that po-
tentially correspond to inherent characteristics of a mal-
ware family, e.g., those that frequently appear within a
family but rarely occur in others, their original code seg-
ments can be traced back and used signatures to detect
malware variants.

Figure 4: Encoding a function into a feature vec-
tor

6. CLUSTERING ALGORITHM
Next step in MutantX-S is clustering malware sam-

ples into groups that share common traits. Considering
the enormous number of malware in the wild, the goal of
MutantX-S is to process hundreds of thousands malware
files sufficiently fast. Unfortunately, classic clustering
algorithms such as hierarchical and partitioning-based
clustering, e.g., K-Means or K-Medoids—although they
have been successfully applied to cluster malware be-
havior [5] and create phylogeny trees [12]—incur a time
complexity at least quadratic in the number of samples,
which in practice, does not scale to the MutantX-S’ tar-
get. MutantX-S exploits two approaches to address the
scalability issue: (1) a hash kernel that compresses the
high dimensional feature vector into a low dimensional
space, and (2) a prototype-based clustering algorithm
that has close-to-linear runtime complexity.

6.1 Hashing Kernel
Kernel methods [23] are powerful tools used in ma-

chine learning to allow operation in the high-dimensional
feature space without ever having to compute the coor-
dinates of the data in that space. This is particularly
useful when the input data has a non-linear decision

boundary but can be linearly separated in a high di-
mensional feature space. In MutantX-S, however, we
have encountered the opposite problem: the original
space is very high-dimensional4. The number of dimen-
sions D determines the complexity when computing the
vector distance and D increases exponentially with N
in N -gram (i.e. D = |O|N where |O| is the number of
different opcodes and in practice |O| > 200). Therefore
even a small N like 3 will result in a (very sparse) fea-
ture vector with more than 8 million dimensions, which
is computationally prohibitive when calculating simi-
larities for large number of malware samples. Unfor-
tunately, N has to be at least 3 or 4 to be descriptive
enough for capturing the program semantics.

To address the problem, MutantX-S exploits the hashing-
trick recently developed in the machine learning com-
munity[24], which hashes the high dimensional input
vector x ∈ R

n into a lower dimensional feature space
R

m with the mapping function φ : X → R
m. Since

m ≪ n, the hashing trick reduces a feature vector to
a more compact representation, allowing the clustering
algorithm to handle a large volume of data and save
both computation and memory requirements. Previous
research has shown that the hash kernel approximately
preserves thevector distance, because the penalty in-
curred from using a hash for reducing dimensionality
only grows logarithmically with the number of samples
and groups [24, 13].

Specifically, MutantX-S applies a uniform hash func-
tion H : {N-gram} → [1..m] that hashes N -gram di-
rectly into a position in the feature vector of length m.
In case of a collision where two or more N -grams map
to the same position, the sum of their counts is used
as the value in the new vector. More formally, for mal-
ware M and M ′, let v and v′ represent their original
feature vector extracted from the encoded opcode se-
quences and ξ denote the mapping from the N -gram
(o1, o2, . . . , oN) ∈ S to the index in v. We define the
hash feature map φ as

φi(v) =
∑

l:H(o)=i,l∈S

v(ξ(o))

and the distance between M and M ′ as

dφ(M,M ′) = ‖v − v′‖φ = ‖φ(v), φ(v′)‖.

The choice of m, the length of the low dimensional
vector, is a tradeoff between clustering accuracy and
storage overhead as well as computation complexity.
Choosing a smaller m means shorter vector length, thus,
fast distance computation and smaller memory foot-
print to malware features. However, decreasing m re-
duces the number of bins in which the hash function can
place the different N -gram and consequently increases

4thus, the input data are likely already linearly separable

7

the collision possibility, leading to over-compression of
features and negative impact of the clustering accuracy.

6.2 Prototype-Based Clustering
The majority of computation in clustering goes to the

comparison of malware samples. Classic clustering algo-
rithms typically incur a complexity that is super-linear
in the size of the input data. For example, the running
time for two most widely-used clustering algorithms k-
means and hierarchical clustering are O(nkd) [3] and
O(n2logn) [17], resulting in the computation time that
is prohibitively large for the number of malware samples
we have to deal with. To address this scalability prob-
lem, MutantX-S adopts the prototype-based linear-time
clustering algorithm designed in [22].

Prototype-based algorithms belong to the type of un-
structured and model-free methods for clustering and
pattern matching. Despite their simplicity, they have
been empirically shown to be very effective and often
one of the best performers in real data [10]. Prototype-
based clustering first extract a set of prototypes each of
which serves as the representative for a small group.
Then the remaining data points are associated with
their closest prototype in the feature space. The key
idea of Prototype-based algorithm is to perform com-
putation (e.g. clustering) only on the prototypes which
are a small subset of original data points, thus reduc-
ing the computation time significantly. The algorithm
consists of following two steps.

Prototype extraction: The quality of final clusters de-
pends on the choice of the prototypes. Well-positioned
prototypes can accurately capture the distribution of in-
put data and allows creating accurate class boundaries
in the feature space. Unfortunately, determining the
optimal number and positions of prototypes has been
shown to be NP-hard [22]. For scalability consider-
ation, an approximate algorithm by Gonzàlez [8] was
commonly used to iteratively select prototypes. During
each iteration, the data point with the largest distance
to existent prototypes is selected as the next prototype5.
The process is is repeated until the distance from all the
data points to their nearest prototype is smaller than a
predefined threshold Pmax. In other words, all the data
points are located within a certain radius from their
closest prototypes. The run-time complexity of this al-
gorithm is O(kn) where k is the number of prototypes
selected. Since k only depends on the distribution of the
data (in this case, k is proportional to the number of
similar malware groups or families), with a reasonable
choice of Pmax the algorithm is linear in the number of
input data n.

Clustering with prototypes. Instead of working on the
huge number of original data points, the algorithm per-
forms agglomerative hierarchical clustering only on the

5the first prototype is selected randomly

prototypes. Specifically, the algorithm starts with in-
dividual prototypes as singleton clusters, successively
merges two closest clusters, and terminates when the
distance between the closest clusters is larger than a
predefined distance threshold Mind. Then, prototypes
within the same cluster are assigned the same clus-
ter label and subsequently propagate the label to their
associated data points. Because each prototype is a
good representation of its associated data points (all
within a radius of Pmax), the algorithm avoids expen-
sive distance computation between the original data
points without too much loss in the overall accuracy.
The respective run-time complexities of clustering and
propagation steps are O(k2log k) and O(n). Compared
to the O(n2log n) complexity of applying an hierarchi-
cal clustering algorithm on the original data points, this
algorithm achieves a significant speed-up, with a factor
of at least (n/k)2.

7. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and accu-

racy of MutantX-S based on two data sets: (1) a refer-
ence data set containing 4821 malware files whose labels
are generated by security experts from a large anti-virus
company and thus more reliable; and (2) a large mal-
ware data set collected from an online malware archive
[27] which comprises 132,234 malware samples with un-
reliable labels derived from AV scanners. The refer-
ence data set includes malware samples from 20 differ-
ent families and their detailed distribution is given in
Table 2. Considering its reliable labeling, the reference
set is used to evaluate and fine-tune the empirical pa-
rameters for the MutantX-S’ clustering engine while the
large set is used to assess its scalability.

Family # Family # Family #

Pilleuz 500 Bredolab 301 Tidserv 59
Koobface 496 Vundo 249 Waledac 34
Silly 489 Almanahe 241 Ackantta 32
Fakeav 489 Sasfis 199 Mebroot 26
Zbot 459 Graybird 166 Hotbar 21
Banker 449 Gammima 126 Qakbot 17
Virut 361 Mabezat 107

Table 2: Malware families of the reference data
set

7.1 Effectiveness of Unpacking Engine
To evaluate the effectiveness of MutantX-S’ unpack-

ing component, we select a malware program and packed
it with 8 popular packers. We then unpack them with
MutantX-S and compare unpacked files with the orig-
inal version. Ideally, the unpacked binary should be
byte-to-byte identical to the original file. However, this
is neither possible (MutantX-S does not reconstruct the

8

import table, and the unpacker code is dumped from
the memory too), nor necessary for the purpose of mal-
ware clustering. As a result, we compared the un-
packed files with the original one using two metrics,
(i) the difference in their instruction count (IC) and
(ii) the distance between their N -gram feature vectors
(NG), because they are directly related to the cluster-
ing accuracy. These results are summarized in Table 3.
For most packers, the MutantX-Ssuccessfully recovered
their original binaries with only a 1–6% increase of ICs
which is often due to the inclusion of unpacker rou-
tines in the dumped memory. Besides, the feature vec-
tors of unpacked binaries are very similar to that of the
original binary with most normalized distance measure-
ments below 0.1, where 0 means identical and 1 means
completely different. However, MutantX-S also failed
on certain packers. In particular, the memory dump
of Armadillo-packed malware sample still contains a
packed version of the binary. A further investigation
showed that Armadillo works by unpacking an interme-
diate executable on disk and creating another process
to run this executable [18]. Therefore, memory dumps
of an Armadillo-packed file does not contain original in-
structions. After running MutantX-S on the large data
set, we have also observed other causes of unsuccessful
unpacking, such as malware samples refusing to run in
a virtual machine or the time required for unpacking
is longer than the threshold used in MutantX-S . De-
spite these rare limitations, the generic unpacking tech-
nique used in MutantX-S is still effective against popu-
lar packers without requiring any specialized unpacking
algorithm.

Packer Diff in NG Dis- Packer Diff in NG Dis-
IC (%) tance IC (%) tance

ASprotect 6.70% 0.133 PEcompact 0.88% 0.068
EXECryptor 3.20% 0.176 UPX 0.88% 0.068
EXEStealth 0.88% 0.071 VMprotect 2.50% 0.1
NSPack 0.87% 0.069 Armadillo

Table 3: Unpacking effectiveness (IC: Instruc-
tion Count; NG: N-gram)

7.2 Malware Clustering Accuracy
We first evaluate and calibrate MutantX-S against the

reference data set. All of our evaluations were done
on a Ubuntu 10.4 machine with Core i7 3.0G CPU
and 12GB memory. We use precision and recall as
the main metrics to assess the accuracy of MutantX-S’
clustering. Suppose that with respect to the original
labels (i.e., family names e.g. Table 2), n input mal-
ware samples can be grouped into a set of clusters O =
{O1, O2, . . . , Oo}. Assume MutantX-S outputs a set of
clusters C = {C1, C2, . . . , Cc}. Then precision P mea-
sures how well the individual clusters agree with the
original malware classes (i.e., the exactness of clusters),
and recall R measures how much the malware classes

are scattered across the clusters (i.e., the completeness
of each cluster). Formally, we define P and R as:

P =
1

n

c
∑

i=1

max(|Ci ∩ O1|, |Ci ∩ O2|, . . . , |Ci ∩ Oo|)

R =
1

n

o
∑

j=1

max(|Oj ∩ C1|, |Oj ∩ C2|, . . . , |Oi ∩ Cc|)

P will be 1 if all the samples in every cluster Ci are from
the same family and R will be 1 if all malware samples
from the same family fall into a single cluster (but not
necessarily the only family in this cluster). Figure 5
shows the precision and recall of MutantX-S’ cluster-
ing with varying thresholds Pmax and Mind (defined in
Section 6). The experiment uses 4-gram and the num-
ber of hash bits is 12 (i.e., the 4-gram is mapped into
212 hash bins).

From the figure, we observe that MutantX-S is able to
cluster the samples with the precision ranging from 0.72
to 0.89 (average=0.80). The precision number is smaller
than those reported in previous dynamic-behavior ap-
proaches, e.g., 0.996 in [22] and 0.984 in [6]. While
this difference may be due to different malware sets
(and possibly incorrect labeling) used in our experi-
ments, we conjecture that the reason for the higher ac-
curacy of dynamic-behavior approaches is more likely
due to its high-level generalization of behavior, with
the cost of longer running time and limited coverage
(because dynamic analysis can only observe behaviors
exhibited during a particular execution. A lot of mal-
ware contain triggers in their programs and will not
show any malicious behavior unless certain conditions
are met e.g, particular date, time, existence of files,
control command from the network, etc, These condi-
tions vary across malware samples and are very difficult
to simulate during the dynamic anlaysis.) Therefore,
MutantX-S can provide an alternative way of catego-
rizing malware and is complementary to the behavior-
based analysis with better scalability while maintaining
reasonably good accuracy. Indeed, Figure 5 shows that
it takes only less than 30 seconds to complete the clus-
tering for the entire reference dataset (We also run the
K-mean and hierachical clustering on the same dataset
and they respectively take 32.3 seconds with precision
0.75 and 51.3 seconds with precision 0.82). In addi-
tion, we observe that the recall of MutantX-S is around
0.3 and 0.4. However, this low value of recall is not
surprising, because we observe that there often exists
much diversity across malware variants. For instance,
we observe one variant in Vundo family is 10 times big-
ger in terms of file size than the other Vundo variant.
This is possibly due to mislabeled samples, unidenti-
fied packers or heavily-obfuscated binaries. Because of
the highly diverse variants, MutantX-S tends to break

9

0.2
0.4

0.6
0.8

0.2
0.4 0.6 0.8

1

70

75

80

85

90

Min
d

Clustering Precision

P
max

P
re

ci
si

o
n

0

0.5

1 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Min
d

Clustering Recall

P
max

R
ec

al
l

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

1

0

10

20

30

40

P
max

Running Time of Clutering

Min
d

S
ec

o
n

d
s

Figure 5: Precision, recall and running time of MutantX-S’ clustering

the one family into several sub-families, resulting in a
low recall value. For instance, MutantX-S creates more
than 50 clusters for the reference dataset which contains
20 families according to the labels. Albeit less ideal, a
breakdown into small subfamilies is acceptable in prac-
tice, e.g. predicting labels for unknown samples as we
demonstrated later.

Another observation from these results is that Pmax

(the threshold for distances from all data points to their
nearest prototypes) has a greater influence on the clus-
tering speed, since a smaller Pmax forces the algorithm
to find more prototypes to cover all the data points,
thus requiring more computation. On the other hand,
Mind has a major impact on the clustering accuracy,
i.e., increasing Mind reduces the precision. The reason
is that a smaller inter-cluster distance threshold will
stop the prototype merging process earlier which will,
in turn, reduce the probability of combining unrelated
prototypes into a larger cluster. However, the price for
this is the overfitting of clustering, i.e., the algorithm
tends to create several small clusters. Hence a tradeoff
has to be empirically made, as in our later experiments.

7.3 Validity of the Hashing Trick
The main concern in using the hashing trick is the

possible loss of information due to the compression of
high dimensional features into a lower dimensional space.
To evaluate the efficacy of hashing trick, we use differ-
ent number of hash bins to cluster the reference data set
and study its effect on the accuracy. The hash function
used in MutantX-S is MurmurHash 2.0 [2], a simple hash
implementation with uniform value distribution, high
throughput, and good collision resistance. As compar-
ison, we also ran the clustering algorithm on the orig-
inal feature vectors without any hashing trick, which
serves as the baseline benchmark and best-possible re-
sult achievable without information loss.

Figure 6 compares the precision, clustering time and
peak memory requirements with different hash sizes (the
number of hash bins ranging from 28 to 216 and no
hash). Different bars represent the results generated by
different parameter combinations. From the left figure,

we find that as the hash size increases, the precision
improves because the collision probability reduces. In
fact, when the hash size is large enough, the probability
of collision becomes so negligible that the hashed fea-
tures vector perform the same as the original ones. For
instance, with more than 212 hash bins, the clustering
achieves almost the same precision, 0.864, as the origi-
nal features P = 0.868. However, as the hash size be-
comes smaller, the impact of collision starts to surface.
When the number of hash bins reduces to 28 = 256,
the precision drops significantly (less than 0.5) for some
parameter combinations, due to collision of many criti-
cal features (e.g., features indicative of different fam-
ilies are now mapped to the same hash bin) In this
regard, a larger hash size is preferable, On the other
hand, the middle and right figures in Figures 6 show
that a small hash size is very effective in reducing the
algorithm’s running time and memory footprints. This
is because smaller number of hash bins means shorter
feature vectors which require less memory for storage
and fewer CPU cycles to compute the distance. For
instance, as the hash size decreases from 16 bits to 8
bits, the required running time drops from almost 2
minutes to less than 10 seconds and memory require-
ment from 800 Mbytes to less than 100 Mbytes, at the
cost of precision.In practice, a 12-bit hash function is
found to be a good compromise, reducing the time and
memory requirements by over 80% while still keeping
good accuracy6. Figure 6 also shows that as the number
of malware increases, the hashing trick becomes criti-
cal. Without it, the memory requirement could become
quickly prohibitively high.

7.4 Impact of N-gram on Performance
Intuitively, as N increases, N -gram becomes more

descriptive, because more instructions can be repre-
sented by each N -gram, providing better distinguisha-
bility However, this comes at the cost of exponential
increase in the dimensionality of the resulting feature
vectors (mN where m is total number of different op-

6Hence, unless specified otherwise, throughout the paper,
the experiments are performed with a 12-bit hash function

10

Figure 6: Precision, time, and peak memory with hash bin number ranging
from 28 to 216 and with no hash trick .

0.3 0.4 0.5 0.6 0.7
0.7

0.75

0.8

0.85

0.9

3 gram
4 gram
5 gram
6 gram

Figure 7: Precision of
clustering with different
N .

codes), as well as the required storage and computation
time. Therefore, previous work that uses N -gram based
approaches commonly chose small N (3 or 4). Fortu-
nately, hashing trick enables us to compress the feature
vectors and evaluate the performance of large N . Fig-
ure 7 summarizes the result with N = 3, 4, 5, 6.

From Figure 7, one can observe that use of a larger
N value indeed improves the precision, e.g., 4- and 5-
grams achieve better precision than 3-gram since larger
grams can better capture the underlying instruction se-
mantics. However, the figure also shows that 6-gram
performs the worst. This is because the number dif-
ferent 6-grams (i.e., over 6.4 ∗ 1012) is too large for
the 12-bit hash function (4096 hash bins), leading to
a large number of collisions between irrelevant features.
In MutantX-S, we have chosen 4-gram, because the im-
provement provided by 5-gram is not large enough to
warrant the additional storage and computation over-
heads.

7.5 Scalability of MutantX-S
In this subsection, we evaluate the scalability and ac-

curacy of MutantX-S on the large malware data set with
over 130,000 samples. We ran MutantX-S on the entire
set with different parameters and plotted the results in
Figure 8. The right figure in Figure 8 shows the amount
of time for clustering the entire set. the value Pmax

seems to have a more significant impact on the running
time. For example, when Pmax is set to 0.5, the clus-
tering takes less than 1 hour which is almost half of
the time when Pmax is set to 0.2. As explained before,
Pmax determines the number of prototypes extracted
from the input data which determines the total number
of distance computations required for clustering. Al-
though larger Pmax leads to shorter running time, the
left figure in figure 8 illustrate the correlation between
a large Pmax and the reduced clustering precision, i.e.
increasing Pmax from 0.2 to 0.5 reduces the precision by
almost 10%. This can be explained as follows: a large
Pmax allows each prototype to cover a large portion
of the space, thus increasing the possibility of including
samples from irrelevant families. With a reasonable set-
ting (e.g., Mind = 0.5 and Pmax = 0.4), MutantX-S is

able to complete the clustering of over 130 K malware
in less than 1.5 hours with the precision close to 0.82.7

The peak memory usage is around 3.6 GB. These results
indicate that MutantX-S is very efficient in handling a
large number of samples and thus has the potential to
keep up with the huge influx of malware variants re-
ceived nowadays.

Figure 8: Precision and running time of
MutantX-S’ clustering over 130 K samples

7.6 Predicting Labels of Unknown Malware
Samples

So far, we have evaluated MutantX-S using the data
set of known malware families. In a realistic scenario,
e.g., in AV companies, MutantX-S is more likely to be
used to analyze new incoming malware and predict their
family labels. In such a scenario, incoming malware are
analyzed and labeled according to their association with
the closest kin in the previously-analyzed samples. To
simulate this situation, we need a chronological order of
malware samples according to their creation time. We
extract the creation time for each malware from their
IMAGE FILE HEADER. IMAGE FILE HEADER is a
standard header in the PE file and contains a times-
tamp field that is set by the compiler at the compi-
lation time. We use this timestamp to bucket malware
programs into months and select one year worth of mal-
ware (more than 40 thousand unique samples). Figure 9
shows the distribution of the number of new malware
samples across all months. Next, we use these malware
to simulate the process of determining the labels for
new incoming samples.

7The recall for the large data set is around 0.25 because
of breaking the samples from large malware families into
relatively small groups.

11

0 2000 4000 6000
1
2
3
4
5
6
7
8
9

10
11
12

Number of new malware

M
on

th

Figure 9: Number of
new samples in each
month used to evaluate
prediction capability

7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Test Month

A
cc

u
ra

cy

Predict with all previous months
Predict with previous 6 months
Predict with first 6 month

Figure 10: Accuracy of
applying MutantX-S to
predict family labels for
unknown malware

Specifically, we separate the malware program into
training set and testing set based on their creation time
in order to simulate the scenario where AV compa-
nies have analyzed the malware from training set and
try to predict the labels for newly received malware (
testing set). The test set consists of malware samples
from each month between July and December (these
months are “test months”). Then, we choose 3 different
training set. For the first training set, we use samples
from all months from January to one month before the
test month. For instance, if the test month is Septem-
ber, the training months are January through August.
For the second training set, we use 6 months prior to
the test month, i.e., if September is the test month,
March through August will be the training months. Fi-
nally, as a controlled experiment, we keep the the first
6 months (i.e., January through June) as the training
month regardless of test months. Given any training
set, MutantX-S create a set of clusters Ci (i = 0, 1, ...n).
Each cluster has a label L(Ci) determined by the ma-
jority family labels of the constituent malware samples.
Then MutantX-S determines the family label L(xj) of
the new sample xj in the test month based on the label
of the cluster that is closest to xj i.e. L(xj) = L(Ci)
where d(xj , Ci) = min(d(xj , Ck))∀k = 0, 1, ..n. We
then compare this predicted family label with the orig-
inal label of xj , and plot the percentage of correctly
predicted samples in Figure 10. The first observation
from the figure is that malware are constantly evolving
and information obtained from previous clustering can
become obsolete quickly, as shown by the bottom green
line where we kept on using the same first 6 months as
the training data and the prediction accuracy degraded
rapidly from 0.7 in July to below 0.4 in December. In
contrast, if we use the full history as the training data,
the accuracy stays consistently in the 0.7 – 0.8 range
(the top red line in Figure 10), thanks to the up-to-
date information from the recent malware. However, in
reality, due to the resource constraints (e.g., storage),
it may not be possible to keep the entire set of previ-
ous malware samples. It is more efficient to use only the
most recent history, e.g., 6 months as in the middle blue

line. From Figure 10, one can see that the result is very
close to that of using the full history, with only small de-
creasing about 2 to 3%. These results imply that there
exists strong temporal correlation among malware vari-
ants which can be exploited by MutantX-S in predicting
the labels for unknown malware samples.

8. LIMITATIONS AND IMPROVEMENTS
We now discuss limitations of the current MutantX-S pro-

totype that could be exploited by adversaries to de-
grade its clustering effectiveness. As a static-analysis
approach, MutantX-S is vulnerable to binary/instruction-
level obfuscation. First, even with the generic unpack-
ing algorithm, MutantX-Sis less effective against ad-
vanced packers, such as Armadillo that employ sophisti-
cated protection mechanisms, e.g., driver-level protec-
tion, anti-debug, anti-emulation, etc. Specialized un-
packing tools have been developed for these packers
and they can be incorporated into MutantX-Sto com-
bat these packers. Second, MutantX-S extracts features
from disassembled malware code. Unfortunately, pro-
ducing correct disassembly is often very challenging and
many anti-disassembly tricks[29] can be used to confuse
a disassembler such as mixture of code and data, mak-
ing an infeasible conditional jump to the middle of next
instruction, etc. Although the current MutantX-S pro-
totype does not handle these types of obfuscation for
simplicity, there are a variety of techniques [15] pro-
posed to mitigate these problems. Third, MutantX-S re-
lies on the similarity of code instructions to cluster mal-
ware samples. It is possible to create syntactically dis-
tinct but semantically similar variants through heavy
instruction-level obfuscation. To address these prob-
lems, MutantX-S could incorporate more advanced de-
obfuscation techniques [25, 20] and normalize the mal-
ware codes before clustering them. Note that dynamic-
behavior-based approaches do not suffer from this lim-
itation, but they come with their own deficiencies—
limited coverage, scalability and specific evasion tech-
niques too. Therefore, the goal of MutantX-S is not
to replace the dynamic approaches, but to complement
them and mitigate their weaknesses. Finally, MutantX-S can-
not handle file infector or parasitic malware types which
inject themselves into host executables. This is a lim-
itation for any similarity based clustering, regardless
static and dynamic, because most features are from the
host executables rather than the virus. Such parasitic
malware is a matter of our future inquiry.

9. CONCLUSION
In this paper, we have presented the design, imple-

mentation and evaluation of a malware clustering sys-
tem based on static features, called MutantX-S. MutantX-Scan
accurately and efficiently group malware variants ac-
cording to the similarity in their code instructions. MutantX-S con-

12

verts each malware program into a compact but ef-
fective opcode representation and performs prototype-
based clustering on the corresponding N -gram feature
vectors. MutantX-S incorporates a generic unpacking
technique to maximize the capability of analyzing the
malware’s original instructions. To ensure the scala-
bility of clustering, MutantX-S uses a combination of a
hashing kernel that reduces the dimensionality of fea-
ture vectors and a close-to-linear time prototype-based
clustering that uses a small set of representative samples
for fast data organization. Equipped with these tech-
niques, MutantX-S is experimentally shown to be able
to process more than 100,000 malware samples within a
few hours. As a static-analysis approach, MutantX-S is
expected to be very effective and can be combined with
existing dynamic-behavior-based system to provide the
level of accuracy and coverage required to pace with the
current malware sample submission rate.

10. REFERENCES
[1] Peid 0.95. http://www.peid.info/, 2008.
[2] Appleby, A. Murmurhash 2.0.

http://sites.google.com/site/murmurhash/.
[3] Arthur, D., and Vassilvitskii, S. How slow is the

k-means method? In Proceedings of the twenty-second
annual symposium on Computational geometry (New
York, NY, USA, 2006), SCG ’06, ACM, pp. 144–153.

[4] ASpack Software. Aspack.
http://www.aspack.com/.

[5] Bailey, M., Andersen, J., Mao, Z. M., and
Jahanian, F. Automated classification and analysis of
internet malware. Tech. rep., In Proceedings of Recent
Advances in Intrusion Detection (RAID07, 2007.

[6] Bayer, U., Comparetti, P., Hlauschek, C.,
Kruegel, C., and Kirda, E. Scalable,
behavior-based malware clustering. In Proceedings of
the 16th Annual Network and Distributed System
Security Symposium (NDSS 2009) (2009).

[7] Christodorescu, M., and Jha, S. Static analysis of
executables to detect malicious patterns. In In
Proceedings of the 12th USENIX Security Symposium
(2003), pp. 169–186.

[8] Gonzalez, T. Clustering to minimize the maximum
intercluster distance. In Theoretical Computer Science
(1985), vol. 38, pp. 293–306.

[9] Guo, F., Ferrie, P., and Chiueh, T.-C. A study of
the packer problem and its solutions. In 11th
International Symposium on Recent Advances in
Intrusion Detection: RAID’08 (2008), pp. 98–115.

[10] Hastie, T., Tibshirani, R., and Friedman, J. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, 2009.

[11] Jang, J., Brumley, D., and Venkataraman, S.
Bitshred: feature hashing malware for scalable triage
and semantic analysis. In Proceedings of CCS’11
(2011).

[12] Karim, M. E., Walenstein, A., Lakhotia, A., and
Parida, L. Malware phylogeny generation using
permutations of code. JOURNAL IN COMPUTER
VIROLOGY 1 (2005), 13–23.

[13] KilianWeinberger, Dasgupta, A., Langford, J.,
Smola, A., and Attenberg, J. Feature hashing for

large scale multitask learning. In Proceedings of the 26
th International Conference on Machine Learning
(2009).

[14] Kolter, J. Z., and Maloof, M. A. Learning to
detect and classify malicious executables in the wild.
Journal of Machine Learning Research 7 (2006), 2006.

[15] Kruegel, C., Robertson, W., Valeur, F., and
Vigna, G. Static disassembly of obfuscated binaries.
In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13 (Berkeley, CA, USA,
2004), SSYM’04, USENIX Association, pp. 18–18.

[16] Lee, T., and J.Mody, J. An automated virus
classification system. In Proceedings of VIRUS
BULLETIN CONFERENCE OCTOBER 2005 (2005).

[17] Manning, C. D., Raghavan, P., and Schutze, H.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[18] Martignoni, L., Christodorescu, M., and Jha, S.
Omniunpack: Fast, generic, and safe unpacking of
malware. In In Proceedings of the Annual Computer
Security Applications Conference (ACSAC (2007).

[19] Pontello, M. Trid.
http://mark0.net/soft-trid-e.html.

[20] Raber, J., and Laspe, E. Deobfuscator: An
automated approach to the identification and removal
of code obfuscation. Reverse Engineering, Working
Conference on 0 (2007), 275–276.

[21] Rieck, K., Holz, T., Willems, C., Düssel, P.,
and Laskov, P. Learning and classification of
malware behavior. In Proceedings of the 5th
international conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (Berlin,
Heidelberg, 2008), DIMVA ’08, Springer-Verlag,
pp. 108–125.

[22] Rieck, K., Trinius, P., Willems, C., and Holz,
T. Automatic analysis of malware behavior using
machine learning. tech report, Berlin Institute of
Technology, 2009.

[23] Shawe-Taylor, J., and Cristianini., N. Kernel
Methods for Pattern Analysis. Cambridge University
Press, 2004.

[24] Shi, Q., Petterson, J., Dror, G., Langford, J.,
Smola, A., Strehl, A., and Vishwanathan, V.
Hash kernels. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics
(AISTATS) (2009).

[25] Udupa, S. K., Debray, S. K., and Madou, M.
Deobfuscation: Reverse engineering obfuscated code.
Reverse Engineering, Working Conference on 0
(2005), 45–54.

[26] UPX. the ultimate packer for executables.
http://upx.sourceforge.net/.

[27] VxHeaven. Vxheaven virus collection.
http://vx.netlux.org/, 2010.

[28] Wicherski, G. pehash: A novel approach to fast
malware clustering. In 2nd Usenix Workshop on
Large-Scale Exploits and Emergent Threats (LEET’09)
(2009).

[29] Yason, M. V. The art of unpacking.
https://www.blackhat.com/presentations/bh-usa-
07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf,
2007.

13

