
Access Prediction for Knowledge Workers in Enterprise Data
Repositories

Chetan Verma1, Michael Hart2, Sandeep Bhatkar2, Aleatha Parker-Wood2, and Sujit Dey1

1Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
2Symantec Research Labs, Mountain View, CA, USA

{cverma, sdey}@ucsd.edu, {Michael Hart, Sandeep Bhatkar, Aleatha ParkerWood}@symantec.com

Keywords: Information Retrieval, Machine Learning, Enterprise, File systems

Abstract: The data which knowledge workers need to conduct their work is stored across an increasing number of
repositories and grows annually at a significant rate. It is therefore unreasonable to expect that knowledge
workers can efficiently search and identify what they need across a myriad of locations where upwards of
hundreds of thousands of items can be created daily. This paper describes a system which can observe user
activity and train models to predict which items a user will access in order to help knowledge workers discover
content. We specifically investigate network file systems and determine how well we can predict future access
to newly created or modified content. Utilizing file metadata to construct access prediction models, we show
how the performance of these models can be improved for shares demonstrating high collaboration among its
users. Experiments on eight enterprise shares reveal that models based on file metadata can achieve F scores
upwards of 99%. Furthermore, on an average, collaboration aware models can correctly predict nearly half of
new file accesses by users while ensuring a precision of 75%, thus validating that the proposed system can be
utilized to help knowledge workers discover new or modified content.

1 INTRODUCTION

Enterprise knowledge workers are inundated with
new options for conducting their work with the rise
of Enterprise Social Networks [Leonardi et al., 2013]
and cloud based applications [Salesforce, 2015,
Office365, 2015] alongside traditional technologies
such as email, source control repositories, net-
work file servers, and office software suites. En-
terprises are also embracing new computing de-
vices such as mobile devices and tablets in addi-
tion to existing personal computers, laptops, work-
stations and servers. The amount of enterprise
data grows significantly each year: studies esti-
mate that unstructured data grows annually by 40-
50% [Gantz and Reinsel, 2012]. The fragmentation
in the tools and devices used to work and the sheer
growth of data places increasingly unrealistic de-
mands on knowledge workers to keep up with the in-
flux of data. In fact, it has been reported that 65% of
users have felt at times overwhelmed by the amount
of incoming data [IDG Enterprise, 2014].

This paper presents a system that utilizes machine
learning and natural language processing to automate
the discovery of important new or modified content

and identify which subset of users will likely use or
benefit from it. The system is designed for file servers
and is evaluated with activity collected over eight net-
work file servers from an enterprise customer. Enter-
prises use file servers for a myriad of purposes includ-
ing storing application data, back up, enabling collab-
oration, and hosting personal home directories. The
proposed system will support a wide range of appli-
cations, such as recommender systems or server cache
management systems, by providing predictions about
what data will likely be accessed in the near future.

The system bases its predictions on user activ-
ity and content metadata. We track content accessed
by users over a specified training interval. Data (i.e.
access to a particular piece of content) are repre-
sented by a set of features that include path com-
ponents (e.g., parent and ancestral directories), key-
words in the path, and extension. Each datum rep-
resents an instance in training our model. Combin-
ing this training data with the files specifically ac-
cessed by the user, this system builds personalized
models to predict future file accesses. While tra-
ditional approaches for file access prediction such
as [Yeh et al., 2001a, Yeh et al., 2001b] cannot be ap-
plied to recommend new files, the proposed user

model based approach is generalizable enough to be
applied even to content that has not been accessed be-
fore, or is newly created. Additionally, analysis of
file activity yields the insight that very regular pat-
terns of collaboration occur. The paper demonstrates
a method in which an individual’s prediction preci-
sion and recall can be greatly improved by incorpo-
rating the predictions of all other user models.

This work makes the following contributions:

• Observations about the nature of enterprise file ac-
tivity

• A system that analyzes file activity and meta-
data and applies machine learning and natural lan-
guage processing to provide predictions

• A strategy to combine the personalized models of
multiple file users to improve the predictions of
individual users

The paper is organized as follows. Section 2
provides observations about file activity and pre-
processing. Section 3 details the feature space and
Section 4 describes the construction of metadata and
collaborative filtering-based user models. Section 5
presents an evaluation of the user models and Sec-
tion 6 discusses the contributions and characteristics
of the features used in the models, and scalability and
deployment related aspects. Section 7 identifies re-
lated work followed by a discussion on directions for
future work in Section 8. Section 9 concludes.

2 DATA

For this work, the system focuses on network
file servers from corporate enterprises with signifi-
cant user collaboration. We select network file servers
based on social network analysis and use an affinity
function where an edge connects two users if the users
have accessed at least one file in common. Collabora-
tion is measured by the triangle count, the number of
triangles formed by sets of three users mutually con-
nected to each other. The file servers are selected from
the 90th percentile based on the triangle count. The
normalized triangle count is calculated by averaging
triangles over all files in a share. For the purposes
of this paper, eight file servers are selected to evalu-
ate the system. Table 1 compares different statistics
from each of the eight servers. Note that the statis-
tics are calculated before removal of scripted activity
as described below. Removing scripted activities is
an important step since our intent is to model the file
access patterns of users for applications such as file
recommendation, and not necessarily to model the file
access patterns of automated processes.

2.1 Detecting scripted activities

Our data suggests that users access files in at least two
modalities. Normal file access activity for users typ-
ically consists of a small number of file accesses in a
short period of time, such as an hour. Another mode
is when a large number of files are accessed which
manifest as a sudden burst of activities. In order to
remove such scripted activities, we record the number
of activities performed by every user in each hour ses-
sion, and label the sessions having exceptionally large
number of activities as scripted. In order to obtain
an appropriate threshold for this purpose, we utilize
Tukey’s outlier factor [Wang et al., 2011] as shown
in Algorithm 1. A (user,hour) tuple is flagged as
scripted if the number of activities corresponding to
the tuple exceeds the threshold calculated as

Q3+ k× IQR. (1)

Here Q3 is the third quartile and IQR is the interquar-
tile range of the number of activities of (user, hour)
tuples. We empirically set k to 5. Since our focus
is on removing scripted activities, if the threshold de-
termined using Tukey’s outlier factor is less than 1000
activities per user per hour, we use 1000 as the thresh-
old. That is, if a user performs more than 1000 file ac-
tivities per hour, we label his/her file activities in that
hour as scripted. Based on such an approach, if an ab-

Algorithm 1 Detecting scripted activities
Input: Num-activities(u, h) tuples ∀ user u in share, ∀ hour h in
dataset. k = 5
Q1= first quartile of Num-activities(u, h) ∀u,h
Q3= third quartile of Num-activities(u, h) ∀u,h
IQR=Q3-Q1
Output: Threshold = Q3 + k × IQR

normally high number of file activities are performed
from a user’s account in an hour, it can be reasonably
expected that at least a large fraction of them were not
performed by the user directly and the result of an au-
tomated or scripted activities. The activities that are
determined to be scripted are removed from the file
activity log over which models are trained and evalu-
ated. Table 1 provides the proportion of file activities
remaining in each share after scripted activities are
removed. From this point, we only provide results on
the shares after scripted activity is removed.

2.2 Metadata tokenization

File metadata in enterprise environments does not
share consistent capitalization or delimitation. For
example, in the Directory Services, a group such as

Share Sample
period
(days)

Users Files
operated

on

Total file
opera-

tions

% after
burst

removal

Triangle
Count

Normalized
Triangle

Count

Create% Read% Write% Delete%

A 123 992 36,009 11M 99.9 280M 8K 2.3 92.7 2.8 2.2
B 122 464 1,309 136K 99.9 4M 3K 0.7 38.9 60.0 0.4
C 122 160 1,044,779 3M 9.3 50K <0.1 0.9 96.8 1.6 0.6
D 121 183 746 11K 99.8 710K 951 5.4 88.4 5.9 2.6
E 66 1,288 99,733 292K 16.3 263M 3K 15.6 50.2 17.3 16.9
F 66 937 6,911 4M 100.0 3K 0.4 0.2 99.5 0.2 0.2
G 66 198 334 14K 100.0 1M 3K 0.2 98.7 0.7 0.4
H 57 398 133,006 4M 93.6 6M 45 15.3 57.8 10.0 16.8

Table 1: Statistics of shares used for evaluation. Degree of collaboration in shares is measured using normalized triangle
counts as outlined in Section 2. The types of events (create, read, write, delete) offer useful insight into the use of each share.
For example, share B observes high “write” workload and may be used as a repository for logs.

Share Min Q1 Q2 Q3 Max
A 1 13 17 41 585
B 1 2 3 5 65
C 1 4 17 54 504,692
D 1 2 3 5 65
E 1 1 1 1 15,478
F 1 1 1 2 1,182
G 1 3 6 10 307
H 1 6 17 101 29,604

Table 2: Minimum, median, maximum,
first (Q1) and third (Q3) quartile of num-
ber of unique files operated upon weekly

Share Most common extensions (% file activities)
A tmp (78) dat (19) gnt (2) pm (< 1) docx (< 1)
B pdf (16) log (12) pma (11) bak (10) txt (8)
C pdf (85) doc (4) xls (3) tif (1) msg (1)
D xls (87) xlsx (6) htm (3) pdf (1) dat (1)
E pdf (92) doc (2) deploy (1) resources (1) vb (1)
F txt (70) stk (19) xls (10) exe (< 1) log (< 1)
G cat (38) bat (18) lnk (8) dll (8) mpr (7)
H xls (35) ret (25) rpt (4) unv (3) pdf (3)

Table 3: Popular file extensions in different shares that users access. Share
B sees large workload on log files and Windows Performance Monitor
(.pma) data files, corresponding with observation in Table 1.

ABC administrators could be recorded as “ABC ad-
mins”, but referred to in a directory name as “AB-
CADMINS”. Therefore, extracting meaningful enti-
ties from metadata requires tokenization that is not
only sensitive to natural language delimiters (e.g.
whitespace), but also the likely concatenation of enti-
ties in alphanumeric substrings.

This system employs a heuristic based approach
to more traditional Natural Language Processing
morphological extraction [Bybee, 1985]. The sys-
tem first tries to develop a list of organizational
specific entities (which may be unique to only
this organization) by analyzing a definitive entity
source. A directory service such as Active Direc-
tory [Active Directory, 2015] is an example of such
a source, which we use for training our system. Enti-
ties could be mined from group names, lines of busi-
nesses, and other user and group metadata. A ground
truth set of entities is blindly constructed by splitting
on a set of hard delimiters. In our case, since the or-
ganization resides primarily in the United States, we
used whitespace and non-alphanumeric characters to
split entries. We compute a frequency dictionary for
all entities and denote D as the total number of enti-
ties extracted. This frequency dictionary is denoted as
the internal dictionary.

In addition to an organizational frequency dictio-
nary, the system will also leverage a general word
frequency dictionary. Not all entities in metadata

could come from the authoritative source mentioned
in the previous paragraph. A frequency dictionary
computed from the frequency of terms in general us-
age, such as Corpus of Contemporary American En-
glish [coca, 2008], will provide information about the
likely tokenization a user would also arrive at. This
frequency dictionary is denoted as the external dictio-
nary.

Tokenization of metadata leverages dynamic pro-
gramming to address the possible concatenation of
multiple entities. The algorithm starts by first splitting
the metadata on hard delimiters, such as whitespace.
For each substring, the algorithm applies another split
if the substring matches a known regular expres-
sion for concatenating entities into one continuous al-
phanumeric sequence. In this system, we consider
variations of CamelCase [CamelCase, 2015]. After
splitting on hard delimiters and regular expressions,
we apply dynamic programming to determine if the
substring should be split into two or more tokens. The
algorithm iterates by finding the optimal tokenization
of each prefix, starting with the prefix of length 1. A
split is scored by multiplying the optimal solution for
the left side (e.g. prefix) and the score for the right
side. The score of the right side is a linear interpola-
tion of the internal and external frequency dictionar-
ies:

β∗ finternal(term)∗ (1−β)∗ fexternal(term). (2)
Empirical results show a β of 0.9 works well in prac-

tice. A penalty factor for either dictionary is applied
when a term is not found. The penalty factor used in
this paper is 1

D∗2len(term) . Note that this approach favors
tokenization with internal entities and fewer tokens.

3 FEATURES

As mentioned in Section 1, the proposed system
is trained over primarily three types of features. For
each file f , we show below how these features are
calculated.

1. Folder features. Typically, the files in a file sys-
tem are organized into folders and sub-folders,
with the intent of placing together files that are
expected to be used together or are related to
the same task. Our aim is to capture the folder
that a file belongs to, and to capture the proxim-
ity between folders with respect to the file sys-
tem hierarchy without having to explicitly de-
fine a folder to folder proximity metric. Let’s
say that the folders in the file system are repre-
sented by F where F (i) represents the ith folder.
The folder features of a file f are represented
as the vector Xf,F where the cardinality of Xf,F
is the number of folders in the file system, i.e.,
| F |. The ith element of Xf,F , i.e., X f ,F (i) is 1
if F (i) lies in the path of file f . For example,
if f is ‘\ f older1\ f older2\ f ilename’ then Xf,F
would be [1, 1, 0, 0, 0, ...] where the first in-
dex of Xf,F corresponds to the folder ‘\ f older1\’
and the second index corresponds to the folder
‘\ f older1\ f older2\’.

2. Token features. In addition to folder organiza-
tion, the nomenclature of files and folders also
provides useful insights into file content and cate-
gorization. In order to capture this, we tokenize
the file path including the file name, and con-
struct a vocabulary based on the popular tokens
(keywords). Each file is then represented as a
bag of words based on the constructed vocabulary,
and based on the tokens present in its path name.
Specifically, if T is the set of tokens in the con-
structed vocabulary, then the token features of file
f are represented as the vector Xf,T where the car-
dinality of Xf,T is equal to | T |. The ith element
of Xf,T , i.e., X f ,T (i) is equal to the number of
times the ith token is present in the path of f . Sec-
tion 2.2 details the tokenization strategy that ad-
dresses concatenation of entities, something quite
common in enterprise metadata.

3. Extension features. In order to understand users’
affinities towards certain types of files, we record

the file extension as a categorical feature. To uti-
lize this in our models, we construct a vocabulary
based on popular file extensions in the share, E .
We then represent the extension of a file f by a bi-
nary vector Xf,E where the ith value of Xf,E , i.e.,
X f ,E (i) is 1 if f has the ith extension, and is 0 oth-
erwise. Cardinality of Xf,E is equal to | E |.

For a file f , the metadata feature vector Xf is obtained
by concatenating the above three types of features.
Specifically, for file f , the metadata feature vector is
obtained as

Xf = [Xf,F , Xf,T , Xf,E]. (3)

4 MODELING

In order to model users’ file access patterns, we
define a training period to train the models, and a test-
ing period to evaluate. We follow a personalized mod-
eling approach where we train one model for each
user. For evaluation, we select 30 users based on the
number of file activities of all users in a share. De-
tails on the selection of evaluation users are provided
in Section 5.1. All files that were operated on during
the training period by at least one user in the share are
the training instances. For user u, the training label of
a file is 1 if u accessed the file during training period,
0 otherwise. Testing instances are the files that are
operated upon in testing period, after removing the
files that were observed in the training period. This
ensures that the testing files are new relative to the
training files. The testing labels are determined in the
same fashion as for training. Note that we only focus
on training and testing over file read events. The total
set of training instances is the same across all users,
but the labels can differ. The same holds for testing.
The overall approach is described in Figure 1(a). We
approach the modeling of file access patterns and its
evaluation as a classification problem and utilize the
features detailed in Section 3.

4.1 Collaborative filtering aware
modeling

As discussed in Section 2, file accesses typically
demonstrate a high degree of collaboration among
users as evidenced by the triangle count. The features
defined in Section 3 only capture metadata attributes
of files. The models trained on these features can
be improved by utilizing the predictions from models
of other users in the same share. With this motiva-
tion, we describe how the system augments the per-

Figure 1: Overall approach of the proposed system. a)
shows the training of user models based on only metadata
features (metadata models). The files accessed by users are
represented in terms of their metadata features, followed by
training of the metadata model. b) shows how individual
metadata user models are applied on validation files to train
collaborative filtering (CF) aware models (Section 4.1).

sonalized user models with additional information to
achieve collaborative filtering.

Figure 1(b) shows the modified approach to make
the trained models aware of the collaboration among
users. We obtain validation instances from the train-
ing instances. There are several ways to do so. We ex-
perimented with sampling validation instances from
training instances for different sampling rates. The
best performance, however, was observed when the
validation set was kept the same as the training set.
On the other hand, the testing set, as required, is com-
pletely independent of the training or validation set.

Let U represent the set of users in a share. The
models labeled with “Metadata models” in Figure 1
represent the |U | personalized classification models
based on the metadata features. Each of the meta-
data models is trained over the training instances,
and applied on the validation instances. For a file f
among the validation instances, the predicted labels
from metadata models are concatenated to form Pf,U
where the jth value i.e., Pf ,U (j) is equal to the pre-
dicted label of the validation instance f by the meta-
data model for the jth user in the share. These pre-
dicted labels are concatenated with the metadata fea-
ture vector of the validation instances to form the fea-
ture vector for a second layer of models. Specifically,

Xc
f = [Xf , Pf,U], (4)

and the second layer of models are binary classifica-
tion models trained with Xc

f as the feature vector for
each validation file f . These collaborative filtering
aware models are represented as “CF aware” models
in Figure 1(b).

During the testing phase, the predicted label for
a given user u on a test file f is obtained as follows.
First the metadata models of all the users in U are ap-
plied on f to obtain their predicted labels. These la-
bels are then concatenated with the metadata features
of f as shown in Eq. 4. Finally, the predicted label for
a user is obtained by applying her CF aware model on
the concatenated feature vector of f .

Constructing CF aware user models based on the
above approach has two key advantages. First, CF
aware models can leverage collaboration by factoring
the predicted labels of other users’ metadata models.
It should be noted that this approach does not require
explicitly defining a similarity metric between users
or their access patterns, and yet enables the model to
improve its predictive performance. For example, if
the users u1 and u2 have similar behavior, it can be
expected that the validation files for which the meta-
data model of u1 predicts a positive label, are also
likely to be accessed by u2. Now consider a third user
u3 whose behavior is very different from that of u1
and u2. Thus, if the metadata model of u3 predicts
a positive label for a validation file f , the likelihood
of the user u1 or u2 accessing f would automatically
decrease. The CF model can leverage such learned
knowledge of similar and dissimilar access patterns
to improve its correctness.

The second advantage of our CF aware modeling
is that it does not suffer from the cold start problem
that the traditional collaborative filtering systems suf-
fer from. To make recommendations to the user u,
these systems first identify other users who share sim-
ilar preferences with u, and then propose items which
were favored by the other users but not seen by u.
Such systems fail to make recommendation for a com-
pletely new item. Our approach gets around the cold
start problem by utilizing the predicted labels of users
in a share along with the metadata features. In Sec-
tion 5.6, we show how the CF aware models improve
the classification performance over the metadata mod-
els. With a higher degree of collaboration, we are ex-
pected to observe higher gains of the CF aware model.
Our results strongly corroborate this observation.

5 EVALUATION

In this section, we describe the evaluation proce-
dure for our modeling approach. In particular, we pro-
vide performance results over eight shares (network
file servers) with varying time duration and separa-
tion between the training and the testing periods. We
first describe the procedure for selecting a subset of
users for our experiments.

5.1 Selecting users for evaluation

A file recommendation system is useful for active
users only. Therefore, we select a subset of users in a
share based on the number of their file activities. We
rank the users in a share in the increasing order of the
number their file activities. For the purpose of evalu-
ation, we then randomly sample 30 users from those
users whose activity numbers are above the third quar-
tile. In an actual deployment, all the active users must
be considered.

5.2 Evaluation metrics

For a user u and a testing file f , the true label is 1 if u
accessed f in the testing period, and 0 otherwise. The
model for u is used to predict the label of the testing
file. Let Ftrue+,u be the set of test files that are actually
accessed by u in the testing period, and Fpred+,u be
the set of test files that are predicted to be accessed by
u. We use precision and recall, which are commonly
used metrics to evaluate classification tasks. For our
problem, the precision and recall are |Ftrue+,u∩Fpred+,u|

Fpred+,u

and |Ftrue+,u∩Fpred+,u|
Ftrue+,u

respectively. For a file recom-
mendation type of an application, while having high
recall is definitely useful, having high precision is es-
sential for usability. If most of the recommendations
(i.e., Fpred+,u) are wrong, the end user will simply ig-
nore the recommendations. Considering this, we use
the following metrics for the evaluation.

• F-score. F-score is calculated as the harmonic
mean of precision and recall and thus provides a
balanced picture of the overall predictions. We
use the F-score averaged across the evaluation
users (AF) as one of the metrics to discuss the re-
sults.

• Recall@75P. We also evaluate the file access
modeling by keeping the precision fixed to a high
value. Using the confidence score for each pre-
diction, we reduce the number of positive predic-
tions until the precision is 75%, and use the recall
at this precision as a performance metric. Thus
recall at 75% precision provides the fraction of a
user’s actual file accesses that a model was able
to correctly predict while ensuring that only 25%
of the model’s positive predictions are not shown
in the user’s activities. AR@75P is its averaged
value across all the evaluation users.

5.3 Varying training and testing periods

We perform evaluation for several combinations of
training and testing periods, with varying time dura-

tion and separation between them. For convenience,
we divide the entire duration of each share into 7
equal size slices as shown in Figure 2. For our evalu-
ation, we experiment with varying lengths of training
periods. For this, we fix the last 2 slices for testing,
and use the first 5 slices for training, while ensuring
that the testing period starts right after the training pe-
riod (See Figure 2(a)). Similarly, we also experiment
with varying lengths of testing periods as shown in
Figure 2(b).

Fixed training period

Test 1

Test 2

Test 5

Fixed testing period

Train 1

Train 2

Train 5

(a) Vary training periods

(b) Vary testing periods

Figure 2: Splitting dataset into various training and testing
periods

5.4 Selecting classification model

We experimented with different classification models.
Table 4 compares the performance of a few models
using the metadata features for share A. It provides
model effectiveness in terms of Avg AF score, which
is the average of F-score across 30 evaluation users,
and across different training and testing periods, as
outlined in Section 5.3. The regularization coeffi-
cient C for SVM models is obtained by logarithmic
grid search over {10−2,10−1,1,101,102,103}. The
gamma parameter for polynomial kernel SVMs is ob-
tained in a similar manner. The best parameters as ob-
tained by three fold cross-validation are finally used
for training. Also, L2 regularization is used.

The table also provides the total model training
time across all training periods and evaluation users.
The time is measured as real time on a 32-core, 64GB,
and 2.6GHz machine. The system is implemented us-
ing scikit-learn [scikit-learn, 2015], a Python library
for machine learning. Our implementation uses mul-
tiprocessing to speed-up the overall training.

Based on the results, we pick Linear SVM for our
modeling because it provides the best trade-off be-
tween effectiveness and training time. Moreover, Lin-
ear SVM also provides learned feature weights, which
are very useful for understanding the significance of
features (see Section 6).

1 2 3 4 5

Tra in in g p e riod s #

0

2 0

4 0

6 0

8 0

1 0 0

A
F

 (
%

)

A

B

C

D

E

F

G

H

Figure 3: AF for the metadata models with the
fixed testing and varying training periods

1 2 3 4 5

Tra in in g p e riod s #

0

2 0

4 0

6 0

8 0

1 0 0

A
R

 @
7

5
P

 (
%

)

A

B

C

D

E

F

G

H

Figure 4: AR@75P for the metadata models with the
fixed testing and varying training periods

1 2 3 4 5

Te s t in g p e riod s #

0

2 0

4 0

6 0

8 0

1 0 0

A
F

 (
%

)

A

B

C

D

E

F

G

H

Figure 5: AF for the metadata models with the
fixed training and varying test periods

1 2 3 4 5

Te s t in g p e riod s #

0

2 0

4 0

6 0

8 0

1 0 0

A
R

 @
7

5
P

 (
%

)

A

B

C

D

E

F

G

H

Figure 6: AR@75P for the metadata models with the
fixed training and varying test periods

Metric Linear
SVM

Polynomial
SVM degree 2

Multinomial
Naive Bayes

Decision
Tree

Avg AF 80.7 83.0 25.0 77.6
Train time
(mins)

31 236 6.2 78

Table 4: Performance comparison between different ma-
chine learning algorithms

5.5 Metadata modeling

Figures 3 and 4 respectively show how AF and
AR@75P for metadata models are affected by vary-
ing length of training periods. The longest training
period, the one corresponding to index 1, leads to
the best performance for most shares. We observe
moderate degradation in performance as the training
window shrinks. This suggests that we need a suffi-
ciently long training window for better performance.
It should be noted that the variations are observed
over different durations of the datasets, ranging from
from 57 to 123 days (Table 1). It can be expected that
as the window of the training period gets longer, after
a point the model performance would decrease. This
is because the model may give more importance to
access patterns that are outdated with respect to the
content that the user is recently accessing. We do
not provide a recommended or optimal training pe-

riod because that would depend on several factors in-
cluding the number of users, their workload, and the
rate of change of access patterns. Nonetheless, in Sec-
tion 6.6, we discuss the potential to learn such type of
configuration parameters based on online model eval-
uation.

Figures 5 and 6 show similar results but for dif-
ferent testing periods. These results show that beyond
testing periods with indices 1 and 2, which are small
(Table 2) and thus potentially noisy, the model per-
formance drops mildly as the length of separation be-
tween training and testing periods increases. The mild
drop shows sustaining ability of our models.

Table 5 summarizes the metadata model results
across all the above combinations using the average
and the maximum values of AF and AR@75P. AF
averaged across all training and test periods is pro-
vided as Avg AF. Max AF shows the best AF achieved
which is an indicative of the realistic performance of
a properly tuned file recommender system. The high
AF and AR@75P values seen for most shares demon-
strate practicality of our metadata models. The sub-
stantial variation in the performance across different
shares reflects differences in their characteristics such
as rate of activity, rate of change in user preferences,
and collaboration.

The last column of Table 5 shows that most of the

Share Avg AF Max AF Avg
AR@75P

Max
AR@75P

% TP
by

others
A 80.7±0.0 91.1±0.0 77.6±0.0 93.9±0.0 20.4
B 46.4±0.0 51.2±0.0 34.9±0.0 44.2±0.0 73.1
C 23.1±0.0 24.2±0.0 11.4±0.0 12.4±0.0 87.7
D 30.7±0.0 36.3±0.0 19.0±0.0 24.7±0.0 82.8
E 26.9±0.0 35.0±0.0 17.9±0.0 24.1±0.0 66.0
F 81.5±0.0 84.3±0.0 82.9±0.0 84.6±0.0 9.8
G 44.8±0.0 51.3±0.0 50.6±0.0 58.3±0.0 99.9
H 47.6±0.0 50.2±0.0 49.9±0.0 53.0±0.0 74.4

Table 5: Performance summary of the metadata models.
Performance numbers are averaged over 5 iterations with
random initialization of the Linear SVM model training.
Numbers are listed along with the standard deviations.

Share Avg AF Max AF Avg
AR@75P

Max
AR@75P

% TP
by

others
A 80.7±0.0 100.0±0.0 78.5±0.0 100.0±0.0 21.2
B 48.6±0.0 77.1±0.0 32.2±0.6 62.1±0.0 73.1
C 23.5±0.0 36.0±0.0 10.1±0.0 16.0±0.0 87.5
D 32.3±0.0 47.5±0.0 21.5±0.0 38.3±0.0 83.3
E 27.6±0.0 41.1±0.0 25.3±0.0 100.0±0.0 65.7
F 81.5±0.0 87.9±0.0 83.3±0.0 89.2±0.0 9.8
G 55.5±0.1 76.2±0.0 58.0±0.2 89.9±0.4 96.6
H 47.6±0.0 57.2±0.0 49.6±0.0 66.5±0.0 75.4

Table 6: Performance summary of the CF aware models.
Performance numbers are averaged over 5 iterations with
random initialization of the Linear SVM model training.
Numbers are listed along with the standard deviations.

correctly recommended files to a user were not cre-
ated by that user in the testing period. This is good be-
cause recommending a newly created file to the user,
who created it, is obviously futile.

5.6 Collaborative filtering aware
modeling

Table 6 provides a summary of the performance of
our CF aware models. On comparing Table 6 with
Table 5, we observe that CF aware models provide
substantial performance improvement over metadata
models for most shares. As discussed in Section 4.1,
the CF aware models are expected to benefit shares
with high amount of collaboration between users.
This is confirmed from the fact that shares B, D, E,
G which show the most improvement are amongst the
top five shares in terms of normalized triangle counts
(Table 1). Although share A is also among the top
five shares, the performance of its metadata models is
already too high to show significant improvement.

In the next section, we discuss the contribution of
different types of features to the performance results.

Feature
type

Percentage of feature
type in top 10 model

features

Total number
of features of

the type
Folder 10.4% 82.0%
Token 47.9% 14.8%

Extension 6.3% 0.1%
User 35.4% 3.1%

Table 7: Analysis of features with respect to feature types.
These numbers are obtained by aggregating the weights per
feature in collaborative filtering aware user models for dif-
ferent training periods as described in Figure 2 and for the
eight shares used for evaluation.

We also discuss scalability issues, and considerations
for real world deployment.

6 DISCUSSION

Given the features in our model, which were most
significant in the trained models? In order to perform
this analysis, for each user, we train a Linear SVM
for CF model (Section 4.1) based on each of the six
training periods as outlined in Section 5.3. The signif-
icance of a feature with respect to a trained user model
can be obtained based on the absolute weight given to
the feature in the model. For each user model, we
select the top ten most significant features. Table 7
shows the proportions of different features among top
features per user model, aggregated across different
evaluation users, shares, and training periods. We
provide insights about file user activity based on how
the models leveraged each feature type below.

6.1 Folder feature analysis

Despite the fact that folder features accounted for
more than 80% of the feature space, only 10.4% of
top features were drawn from this category by the per-
sonalized models. Folders within three levels of the
root account for more than 80% of top ten folder fea-
tures. This makes intuitive sense because folders that
are farther from the root are intrinsically sparser, and
our models apply regularization, which discourages
applying significant weights to sparser features when
more frequent and predictive features are present. De-
spite their proximity to the root, these “shallow” fold-
ers still wield significant predictive power. Interest-
ingly, we found that no file in our test set was imme-
diately descendant of a folder feature (i.e. a folder
distance of zero) in the top ten folder features. Files
in the test set were at least one folder away from the
folders constituting the folder features. In fact, the
data shows that more than a third of the files active in
testing period were 3 or more folders below a folder

feature in the top ten features. Despite the distance,
the ancestral folder still provides quite a bit of predic-
tive value.

6.2 Token features

To preserve the privacy of individuals, groups and or-
ganizations, we can only discuss trends observed in
the tokens that were highly influential in classifica-
tion. We noticed that tokens were drawn from the ap-
plications used to generate the data. The tokens would
either refer to the application name or the application
generated unique prefixes or suffixes in the folder or
file paths. Additionally, paths contained the names of
groups for this organization. This would likely help
members of that group identify which subtrees of the
file system hierarchy contained data integral to their
role. Lastly, tokens referring to the month, year and
content type were important in many models. As ex-
pected, the timestamps of file activity aligned with the
month and year referred to in the path. This circum-
stantially corroborates the importance of temporal in-
formation in our model.

6.3 Extension features

Analyzing the sign of the weights for extension fea-
tures yields an interesting observation: more than
85% of the weights of the extension feature in the top
ten features were negative. Extensions can yield in-
sight into the type of content and/or application that
generated it (which may be used to infer the role
or function of users). Since weights for this feature
were predominantly negative, this indicates it would
be quite unlikely that the user would use the applica-
tion that generated this file, which could imply some-
thing about the nature of their role, e.g. what it is not.
It is possible that for the model, which applies regular-
ization, finding extensions that are strongly anticorre-
lated with the user activity served as a strong indicator
and would substantially contribute to minimizing the
penalty attributed to the model. This would explain
why even though this feature category accounts for
0.1% of all features, it still accounted for 6.3% of the
top ten features.

6.4 User feature analysis

Providing to the model the likelihood that another
user will access this files allows the classification
model to achieve collaborative filtering by account-
ing for other users’ preferences. What is notewor-
thy is that 35.4% of the top ten features for the per-
sonalized models are the probabilities of a user ac-

cessing this file, which account for 3.1% of total fea-
tures. The weights for user features where the user is
not the same as the user for whom the personalized
model is being built were negative 32% of the time
and positive 68% of the time. For users where the
weight of another user’s file access likelihood is nega-
tive serves as an interesting signal that these two users
have different file access patterns and we should not
expect them to have a significant intersection of files
accessed in common. On the other hand, 68% of the
time the weight of the user feature was positive, indi-
cating that the user for whom the model is trained and
this other user have a significant interest in the same
type of files. Interestingly, particular users appeared
as top ten features for many different user models in
the same share. In fact, we observed that the same
user appeared as a top ten feature in five of the thirty
models 20% of the time and the same user appeared
as a top ten feature for ten of the thirty models 9% of
the time. This suggests that perhaps there are particu-
lar users whose file access patterns serve as exemplars
for how users access resources.

6.5 Scalability

As files are generated or modified on a share, our sys-
tem needs to apply personalized model of each user
to make the predictions. Therefore, a high rate of
file operations, or a high number of users will both
adversely affect the scalability our system. We can
address these factors to optimize the testing time as
discussed in Section 8. Moreover, a recommendation
system may not be essential for all the file servers. For
instance, it would not make much sense to deploy our
system on a networked home directory or on a backup
server. Additionally, it may not make much sense to
provide file recommendation to low-volume file users,
but rather focus on enterprise search when they do
need to find information. It may be prudent to train
a model for only the users that are determined to be
sufficiently active in a share. Furthermore, for shares
that do not demonstrate high degree of user collabora-
tion, training and using CF aware models may not be
recommended since they are computationally much
more expensive than metadata based models.

6.6 Considerations for real world
deployment

In this section, we discuss the considerations for de-
ploying the proposed system in an actual enterprise
environment.

In this paper, we validate our system against file
activities that occurred in the past. Whereas for an

actual deployment, the system can be evaluated in an
online manner. This will help in monitoring workload
characteristics, and measuring the effectiveness more
accurately, and in a continuous manner. This can be
used as a feedback to tune the models and make them
adaptive. For instance, parameters such as the length
of the training window and frequency of retraining
can be tuned based on the feedback.

The precision, as reported by our evaluation, pro-
vides a lower bound to the precision that may be ob-
served in an actual deployment. To understand this,
consider that a user is recommended a file that he/she
was not aware of, and the user ends up accessing the
file. This would be a case of true positive, whereas our
current evaluation would show this as a false positive.

Lastly, since a recommendation system can inter-
act with users, it may be possible to obtain subjective
evaluations of the recommendations such as recom-
mendation quality.

7 RELATED WORK

Prior works on modeling file access patterns
have been mostly focused on performance en-
hancement of storage systems, e.g., reducing
I/O latency by prefetching [Amer et al., 2002,
Xia et al., 2008, Kroeger and Long, 2001,
Yeh et al., 2002, Yeh et al., 2001a, Yeh et al., 2001b,
Whittle et al., 2003, Paris et al., 2003]. These sys-
tems make predictions for only existing files, whereas
our approach can make predictions for newly created
files too. However, our focus is on recommendation
rather than caching.

The approach by Song et al. [Song et al., 2014] is
closer to our work since it aims at assisting knowledge
workers by recommending files and actions. It uses
a data mining technique to first group similar files
into abstract tasks, and then mines frequent sequences
of abstract tasks into workflows. It then makes rec-
ommendations by identifying the workflow that best
matches the current file usage pattern of the user.
While the technique attempts to generalize beyond
exact file matching, it cannot provide recommenda-
tions for new files. In contrast, we train personalized
machine learning models that provide recommenda-
tions even for new files. For evaluation of our ap-
proach, we use only those test files that are new with
respect to the training files. The ability to recommend
new content is important in order to connect knowl-
edge workers with new data which is being generated
at a tremendous rate [Gantz and Reinsel, 2012].

Unlike all the previous works, we use much richer
file metadata including filename, path, file system hi-

erarchy, extensions and collaborative filtering in our
models. As a result of this, our work can also supple-
ment existing Data Governance systems with predic-
tive capabilities. While our approach is not ideal for
file caching in performance sensitive applications, it
could be effective in cloud services to reduce network
latency by caching files on client-facing web servers
or directly on clients. It could also be useful for sce-
narios with intermittent connectivity, such as choos-
ing files to cache on mobile devices.

The personalized model based file recommenda-
tion as proposed in our paper is a content-based
recommendation system. As compared to tradi-
tional collaborative filtering based recommender sys-
tems [Linden et al., 2003, Breese et al., 1998], our
approach does not suffer from cold start problem, i.e.,
inability to recommend a new item (file). It should
however be noted that unlike traditional collaborative
filtering techniques, we do not use actual access in-
formation. Rather, we predict the access likelihood of
a user for a particular test item and combine it with
metadata features. This enables us to circumvent the
cold start problem, and thus benefit from collabora-
tive filtering.

Finally, advanced machine learning models
such as factorization machines [Rendle, 2010],
deep neural networks [Salakhutdinov et al., 2007,
Hinton et al., 2006] and topic
models [Nagori and Aghila, 2011,
Ovsjanikov and Chen, 2010] can also be em-
ployed for modeling file access predictions. To a
large extent, these techniques are complimentary
and can contribute in making our models more
effective. Notwithstanding, we approach the problem
as a classification problem and show reasonable
effectiveness even with a simple Linear SVM-based
model. Our focus is more on the domain specific
application, with the goal of extracting meaningful
features from file metadata and user activities.

8 FUTURE WORK

There are several directions in which the proposed
system can be extended to improve both its efficiency
and efficacy, and to make it applicable to new and
emerging scenarios.

Optimization techniques can be developed that
can make the model testing much faster, by judi-
ciously selecting the user models that need to be ap-
plied on a new file. Such techniques may be able to
trade off model correctness for testing speed in some
scenarios.

The metadata features show a high degree of spar-

sity as a result of how they are constructed. A file
typically has very few keywords in its path, and thus
most of its token features would be zero. Simi-
larly, very few of its folder features, and at the max-
imum of one extension feature of a file are non-
zero. While sparsity can be helpful for training user
models [Ngiam et al., 2011], the large dimensional-
ity of data may negatively affect the performance
of the models. It is possible that the correctness
and speed of the proposed system can be further
improved by capturing the interdependence between
different features through dimensionality reduction
techniques such as Principal Component Analy-
sis [Jolliffe, 2005][Van der Maaten et al., 2009]. For
example the folder features demonstrate substantial
interdependence and redundancy and techniques to
transform them to a suitable space may be explored.

Modeling the file metadata and user features in
context of temporal nature of file accesses could also
be a potential direction for further work. For exam-
ple, giving more importance to recent events while
training user models may accommodate shifts in user
interests, leading to improved performance. Identi-
fying and modeling repetitive activity may also be
informative since users may be interested in similar
tasks after fixed time intervals, such as on the same
day each week. As mentioned in Section 6.6, deploy-
ment of the proposed system in an enterprise envi-
ronment offers an online framework to evaluate the
trained models. Online model training or update tech-
niques can be developed that utilize the model evalu-
ation information to improve the trained models by
adapting them to new access patterns or newly ob-
served features. For example, consider a scenario
where a trained model is seen to perform poorly be-
cause most of the recent activity for a user is confined
to a recently created folder that was not part of the
folder features in the trained model. Such information
can be derived from the online evaluation and can be
used to update features of the trained model and to
adapt the model to reflect the updated access patterns.

In addition to training personalized user models,
insight into directed preferences of users may be use-
ful for recommending content. For example if it is
determined that user u1 often accesses documents cre-
ated by user u2, then a recent modification by u2 may
be useful information for u1 and can be used as an
indicator to recommend relevant content.

Lastly, file access prediction offers interesting
possibilities for applications such as information se-
curity, by offering new measures of access improba-
bility.

9 CONCLUSION

This paper presents a system that provides file
recommendation to assist knowledge workers pro-
cess increasing volumes of data. The system utilizes
natural language processing to derive usable infor-
mation from file metadata, and machine learning to
train personalized user models that have good pre-
dictive value, even for files that have not been ob-
served in the past. Through extensive experiments
on real world data we demonstrate the feasibility of
the system to offer high quality recommendations,
which is reflected particularly in the significant re-
call at high precision across eight shares. We also
show that for shares exhibiting a high degree of col-
laboration between its users, the predictions from dif-
ferent user models can be combined to improve the
performance of an individual user’s model. It is ob-
served that the trained models have a high tempo-
ral longevity, and experience moderate performance
degradation for short training periods. Since the sys-
tem requires training personalized models for each
user under consideration, it should be applied only on
shares and users that display sufficient activity and are
determined to be of interest.

REFERENCES

[Active Directory, 2015] Active Directory (2015). Ac-
tive directory. http://msdn.microsoft.com/en-us/
library/bb742424.aspx.

[Amer et al., 2002] Amer, A., Long, D. D. E., Paris, J.-F.,
and Burns, R. C. (2002). File access prediction with ad-
justable accuracy. In International Performance Confer-
ence on Computers and Communication (IPCCC).

[Breese et al., 1998] Breese, J. S., Heckerman, D., and
Kadie, C. (1998). Empirical analysis of predictive al-
gorithms for collaborative filtering. In Conference on
Uncertainty in artificial intelligence.

[Bybee, 1985] Bybee, J. L. (1985). Morphology: A study
of the relation between meaning and form, volume 9.
John Benjamins Publishing.

[CamelCase, 2015] CamelCase (2015). Capitaliza-
tion styles. http://msdn.microsoft.com/en-us/
library/x2dbyw72\%28v=vs.71\%29.aspx.

[coca, 2008] coca (2008). The corpus of contemporary
american english: 450 million words, 1990-present.
Available online at http://corpus.byu.edu/coca/.

[Gantz and Reinsel, 2012] Gantz, J. and Reinsel, D.
(2012). The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east. In
IDC iView: IDC Analyze the Future.

[Hinton et al., 2006] Hinton, G., Osindero, S., and Teh, Y.-
W. (2006). A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554.

[IDG Enterprise, 2014] IDG Enterprise (2014). Big data
survey.

[Jolliffe, 2005] Jolliffe, I. (2005). Principal component
analysis. Wiley Online Library.

[Kroeger and Long, 2001] Kroeger, T. and Long, D. D. E.
(2001). Design and implementation of a predictive file
prefetching algorithm. In USENIX Annual Technical
Conference, pages 105–118.

[Leonardi et al., 2013] Leonardi, P. M., Huysman, M., and
Steinfield, C. (2013). Enterprise social media: Def-
inition, history, and prospects for the study of social
technologies in organizations. In Journal of Computer-
Mediated Communication.

[Linden et al., 2003] Linden, G., Smith, B., and York, J.
(2003). Amazon. com recommendations: Item-to-item
collaborative filtering. Internet Computing, 7(1):76–80.

[Nagori and Aghila, 2011] Nagori, R. and Aghila, G.
(2011). LDA based integrated document recommenda-
tion model for e-learning systems. In International Con-
ference on Emerging Trends in Networks and Computer
Communications (ETNCC).

[Ngiam et al., 2011] Ngiam, J., Chen, Z., Bhaskar, S. A.,
Koh, P. W., and Ng, A. Y. (2011). Sparse filtering. In Ad-
vances in Neural Information Processing Systems, pages
1125–1133.

[Office365, 2015] Office365 (2015). Microsoft office 365.
http://en.wikipedia.org/wiki/Office_365.

[Ovsjanikov and Chen, 2010] Ovsjanikov, M. and Chen, Y.
(2010). Topic modeling for personalized recommen-
dation of volatile items. In The European Conference
on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases.

[Paris et al., 2003] Paris, J.-F., Amer, A., and Long, D.
D. E. (2003). A stochastic approach to file access pre-
diction. In International Workshop on Storage Network
Architecture and Parallel I/Os (SNAPI).

[Rendle, 2010] Rendle, S. (2010). Factorization machines.
In IEEE International Conference on Data Mining
(ICDM).

[Salakhutdinov et al., 2007] Salakhutdinov, R., Mnih, A.,
and Hinton, G. (2007). Restricted boltzmann machines
for collaborative filtering. In ACM International Confer-
ence on Machine Learning.

[Salesforce, 2015] Salesforce (2015). Salesforce.com.
http://www.salesforce.com/.

[scikit-learn, 2015] scikit-learn (2015). scikit-learn Ma-
chine Learning in Python. http://scikit-learn.
org/.

[Song et al., 2014] Song, Q., Kawabata, T., Ito, F., Watan-
abe, Y., and Yokota, H. (2014). File and task abstraction
in task workflow patterns for file recommendation using
file-access log. In IEICE Transactions on Information
and Systems.

[Van der Maaten et al., 2009] Van der Maaten, L. J.,
Postma, E. O., and van den Herik, H. J. (2009). Di-
mensionality reduction: A comparative review. Journal
of Machine Learning Research, 10(1-41):66–71.

[Wang et al., 2011] Wang, C., Viswanathan, K., Choudur,
L., Talwar, V., Satterfield, W., and Schwan, K. (2011).
Statistical techniques for online anomaly detection in
data centers. In IFIP/IEEE International Symposium on
Integrated Network Management, pages 385–392.

[Whittle et al., 2003] Whittle, G. A. S., Paris, J.-F., Amer,
A., Long, D. D. E., and Burns, R. (2003). Using multiple
predictors to improve the accuracy of file access predic-
tions. In International Conference on Massive Storage
Systems and Technology (MSST), pages 230–240.

[Xia et al., 2008] Xia, P., Feng, D., Jiang, H., Tian, L.,
Xia, P., Feng, D., Jiang, H., Tian, L., and Wang, F.
(2008). Farmer: A novel approach to file access correla-
tion mining and evaluation reference model for optimiz-
ing peta-scale file systems performance. In The Interna-
tional ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC).

[Yeh et al., 2001a] Yeh, T., Long, D. D. E., and Brandt,
S. A. (2001a). Performing file prediction with a
program-based successor model. In Modeling, Analy-
sis and Simulation of Computer and Telecommunication
Systems (MASCOTS).

[Yeh et al., 2001b] Yeh, T., Long, D. D. E., and Brandt,
S. A. (2001b). Using program and user information to
improve file prediction performance. In International
Symposium on Performance Analysis of Systems and
Software (ISPASS).

[Yeh et al., 2002] Yeh, T., Long, D. D. E., and Brandt,
S. A. (2002). Increasing predictive accuracy by prefetch-
ing multiple program and user specific files. In Annual
International Symposium on High Performance Comput-
ing Systems and Application (HPCS).

