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ABSTRACT
Today, mobile devices are ubiquitous; a facet of everyday life
for most people. Due to increasing computational power,
these devices are used to perform a large number of tasks,
from personal email to corporate expense account manage-
ment. It is a hassle for users to be required to maintain
multiple mobile devices to separate personal and corporate
activities, but in the past this was a commonplace require-
ment. Today, the Bring Your Own Device (BYOD) rev-
olution has promised to consolidate personal and business
applications onto one device for added convenience and to
reduce costs. As business applications move to personal de-
vices, a clear problem has arisen: how to keep business data
secure and personal data private when they reside on the
same device. Many solutions exist, both for increasing the
security of mobile devices as well as BYOD and Mobile De-
vice Management (MDM) software to allow access to busi-
ness applications and data while keeping it secure.

One chink in the armor for both security and business ap-
plications is “rooted” devices. These devices have been un-
locked, providing low level system access to users and ap-
plications. With root access, users may be able to bypass
BYOD mechanisms in place to protect data, and malware
may be able to access both private personal and business
data on devices. As such, security applications and busi-
ness applications often attempt to identify rooted devices
and report them as compromised. In this paper, we ana-
lyze the most popular Android security focused applications
along with market leading BYOD solutions to discover how
“rooted” devices are identified. We dissect the aforemen-
tioned applications with commonly available open source
Android reverse engineering frameworks to demonstrate the
relative ease of circumventing these root checks. Finally we
present AndroPoser, a simple tool that can subdue all the
root checks we discovered, allowing “rooted” devices to ap-
pear “non-rooted”.
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1. INTRODUCTION
The wide proliferation of smartphones in recent years has
led to a boom in Android (Linux based) mobile devices. An-
droid is so popular that, as of the end 2014 it was installed
on over 70% [2] of smartphones and tablets sold globally.
Following the same trend, personal devices penetrated en-
terprises; putting corporate crown jewels alongside personal
applications, data and threats. This led to the wide spread
adoption of Mobile Device Management (MDM) and Bring
Your Own Device (BYOD) in corporate security solutions
to protect their assets against malicious applications and
malicious or unsuspecting users.

Android is successful, in part, due to its open nature that
avail users, enterprises, governments and telecommunica-
tions providers of numerous customization options. How-
ever, Android’s openness (and Linux ancestry) has also given
rise to applications that leverage “root” access to modify the
most intricate parts of the operating system. Such low-level
and overprivileged access is often seen as a security risk [6,
8] as it provides complete access to the system that can
be leveraged by malware targeting Android devices. For
this reason, mobile software security vendors often include
checks for rooted devices, either to warn the user, provide
added functionality or simply record and report it.

Even without considering the possibility of enabling mal-
ware running on a rooted device to do more harm, it is
difficult if not impossible for enterprises to guarantee that
their corporate policies can be enforced for rooted BYOD
devices. Typically corporate policy prohibits the use of cer-
tain dangerous apps, requires the use of some security and
policy enforcing apps, and may include device tracking and
remote shutdown/wipe capability. However, rooted devices
threaten these policies because users or malicious apps that
gain access can manipulate the underlying operating sys-
tem. Also, apps used for business purposes often encrypt
their data at rest, but a user or application that can ob-
serve the memory and library usage of these apps are able
to access this data when unencrypted in memory.

Approaches currently exist to turn Android into a trusted
platform [3], which allow sensitive functions such as encrypt-
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ing and decrypting data, storing encryption keys, etc. in a
trusted computing base, but these are not widely deployed.
Currently the barriers to entry are that a trusted platform
complicates development, requires partnerships with chip-
makers, and the functionality of a trusted base is rather
limited. Therefore, both security focused applications and
BYOD solutions alike embed checks for the sole purpose of
detecting if a device is “rooted”. Like many security mea-
sures root detection and avoidance has quickly become a cat-
and-mouse game where applications have emerged to hide
traces of“rooting” [4, 1], and application developers have de-
veloped more and more checks. While it is well known in the
community that checks for “rooted” devices are in place, as
well as countermeasures (and counter-counter measures), no
systematic analysis of these methods and their usage across
security and BYOD/MDM applications exists as far as we
know. To fill that gap, in this paper we provide an analy-
sis of the state of the art in root detection across security
and BYOD/MDM applications based solely on static analy-
sis of application packages freely available for Android. Our
analysis reveals that, unfortunately, root detection remains
a tricky task, with no method being able to detect rooted
devices in the presence of a determined user. In addition, we
provide details on how devices are rooted in the first place,
and how privilege escalation to root works on Android. We
also discuss which root detection methods are more difficult
to evade than others, as well as which ones are better at
avoiding detection by simple static analysis.

The remainder of the paper is organized as follows. Section 2
presents related work. Section 3 describes how root access
works on mobile devices along with a detailed analysis of the
mechanisms used to detect such access amongst popular se-
curity focused applications and BYOD/MDM applications.
Section 4 presents AndroPoser; a simple tool that despite
its simplicity can circumvent all of the checks we encoun-
tered, causing apps to behave as if installed on a device that
is non-rooted while it in fact is “rooted”. Finally Section 5
summarizes our work and concludes the paper.

2. RELATED WORK
MDM In [13] the authors present an enhanced root man-
agement system for protecting rooted Android phones by
providing a fine-grained policy and more contextual informa-
tion about applications that are requesting root privileges.
Wang et al. proposed DeepDroid [15], a dynamic enterprise
security policy enforcement scheme on Android devices us-
ing dynamic memory instrumentation of a small number of
critical system processes without any firmware modification.
Rhee et al. [12] proposed a new threat modeling methodol-
ogy to analyze and identify threat agents, assets, and adverse
actions against MDM systems.

Root exploits In [6] the authors analyze the incentives
of mobile malware. The authors encountered multiple in-
stances of mobile malware leveraging root exploits and ques-
tioned the incentives of rooting a phone for malware writers
and smartphone owners. RiskRanker [7] aims to scalably
detect whether a particular app exhibits dangerous behav-
ior like launching a root exploit. Similar efforts can also
be found in [17, 16, 5]. Suarez-Tangil et al. proposed Al-
terdroid [14] for detecting hidden or obfuscated malware
components distributed as part of an app package by an-

alyzing the behavioral differences between the original app
and repackaged versions. Interestingly, Yeongung Park et al.
proposed RGBDroid [10] to protect the system by effectively
responding after an attacker has already attained root-level
access.

Root evasion Applications have emerged to evade root de-
tection; [1] allows users to hide the presence of the su binary
by renaming or removing it. Others such as [4] use Java re-
flection to intercept standard API calls and change their
behavior. The main limitation is that if the check happens
to be done using native code it cannot be bypassed.

Misc. Ongtang et al. proposed Secure Application INTer-
action (Saint) [9] to govern install-time permission assign-
ment and their run-time use according to security policies
defined by the app authors. Rastogi [11] evaluated the state-
of-the-art commercial mobile anti-malware products for An-
droid to test how resistant they are against various common
obfuscation techniques which are usually leveraged by mal-
ware to hide root exploit code.

In our study of the state of the art we were unable to find
a paper that focuses on the mechanisms employed by appli-
cations to detect the presence of “rooted” phones. Thus we
believe this to be the first paper to investigate these methods
and uncover their simplicity.

3. ROOT CHECKS
3.1 How does Root work
There are two common ways that root access is attained
on Android: either a custom Android image (aka ROM) is
installed that provides privilege escalation or an application
exploits a flaw in the operating system to add a privilege
escalation binary to the system partition.

Unlike standard Linux systems the invocation of“su” is com-
monly not enough to elevate privileges to root. Following
the conventions of the Android ecosystem root privilege is
managed through intents. With these intents, an applica-
tion must ask for permission to escalate privileges and this
request must be granted by a supervisor process. Figure 1
depicts the life-cycle of an application requesting root priv-
ileges. First the application invokes the su binary, which
emits a root request intent that gets verified by a supervisor
application (e.g. SuperUser) against an authorization pol-
icy engine before returning the grant/deny status back to su.
Finally, commands which need to run as root are forwarded
to the su daemon process for execution. The su daemon
process is started at device boot time by init, and therefore
runs under user id 0 (in the root context). This rather in-
tricate system is a recent change to cope with new security
features that have been added since Android 4.3.

3.2 ToolBox and Workflow
Android applications are distributed as Android Application
Packages (APKs). The APK is a container that contains an
app’s code along with its resources, assets, certificates, and
manifest file required for installation and execution. The
program’s code is encapsulated into a Dalvik Executable
format, Dalvik being the Virtual Machine that interprets
said bytecode. The Android build process starts from Java,

82



Android	  
Applica,on	  

su	  
binary	  

Policy	  	  
Database	  

Root	  
Management	  
Applica,on	  

su	  
daemon	  	  

Root	  request	  Intent	  

Update/Verify	  

Invoke	  

Result	  

Forward	  	  

1

2

3

4

6

Socket	  

Grant/Deny	  

5

Figure 1: How Root works

compiles it to Java bytecode and converts it to Dalvik in-
structions as necessary. Thus, the process of converting the
Android bytecode back to Java bytecode has gained a lot
of interest as the last step from Java bytecode back to Java
source can leverage the already well populated space of Java
decompilers. Therefore for our research we decided to go,
whenever possible, from Dalvik Executable (DEX) format
back to Java source. To that end we leveraged the following
set of tools:

• Apktool: decompiles android byte code to an interme-
diate language (in case the Java source code was not
fully recovered or the analysis was inconclusive).

• Dex2Jar: converts android bytecode to Java Archive
(JAR).

• JD-core: converts JAR to Java source code.

• Custom Scripts: automates the process and searches
for obvious Java calls and broad references to rooted
phone features described in Section 3.3.

3.3 Common Root Discovery
In our analysis of the most popular security and BYOD apps
on Android, we discovered a number of standard ways de-
velopers use to determine whether or not a device is rooted.
These methods fall into three main categories which we ex-
plore in the following section.

3.3.1 Presence of files
The most common checks for root that we encountered dur-
ing our analysis was the verification of the presence of the
“su” binary or supervisor APK. While it is a simple check
there are actually multiple methods used that we uncovered
in the wild.

Static PATH: On Android devices, binaries are typically
located in a few places (e.g., /system/bin/, /system/xbin/,
/sbin/). Some root checks simply hardcode these paths
(such as, /system/bin/su) and issue an open call such as
shown in Figure 2.

Dynamic PATH: Assuming that the su binary exists in
a few hardcoded paths works in many cases, but is easily
circumvented by moving the binary, extending the PATH
variable, etc. We encountered some root checks that parsed
the PATH variable, appending “/su” to each entry and at-
tempted to open each in a loop. This method is slightly
better than checking for static paths.

System PATH: Similar to the previous check, this executes
the Linux which command with parameter “su” and checks
if the result is 0 (indicating the su binary was found). This
is essentially the same as parsing the PATH variable, but
requires less work for the caller. However, it relies on the
which command and the PATH variable being untampered
with.

Execution: Some methods bypass checking for the su bi-
nary manually and just attempt to execute it as a subpro-
cess. If the return code is not −1, then the binary is assumed
to have been found and executable.

All four variants of this method have the same result; they
are typically adequate at discovering the su binary on a
rooted Android phone. However, we must note how simple
this type of check is to evade. Simply renaming the su binary
to anything else causes all variants to fail completely. Less
drastic evasion techniques are moving the su binary out of
the normal system PATH or even altering the PATH to
exclude wherever su is located. In fact, these methods are
employed by root hiding apps in the market today, making
these specific checks unreliable at best.

Root ACL Program: Most modern methods of rooting
utilize a root access management app (described in detail in
Section 3.1). Some root checks assume that the APK for this
app exists on the system under the path “/system/app/Su-
peruser.apk”. While this is the common location of this app,
this method can be similarly evaded by moving, renaming
or deleting this file.

Setuid: We found one app with an interesting check; the
presence of binaries on the system that were setuid root, or
able to be executed as root (uid 0) by normal users. While
standard su binaries are setuid root, we are not sure if this
is a legitimate check for root as programs could be setuid
root for other reasons.

Installed Packages: Some apps check for the presence of
common root packages being installed on the system (e.g.,
“com.chainfire.supersu”,“com.noshufou.android.su”). We saw
both checks using Android API’s as well as by exec’ing “pm
list packages” and parsing the results from a shell manually.
This is another check that is specifically covered by Root-
Cloak to hide the presence of root.

3.3.2 General Device Settings
Some apps we examined also assume certain settings to indi-
cate that a device is rooted. The two most common settings
are found in the “build.prop” file:

Test keys: If a custom kernel is used on a device the build
version shows that “test-keys” are used instead of “release-
keys”. Some apps assume “test-keys” means the device is
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rooted, which is not always the case. Also, the presence of
“release-keys” does not indicate the device is not rooted.

Build version: We encountered specific checks of the set-
ting “ro.modversion” as well, which can be used to identify
certain custom Android ROMs (such as Cyanogenmod).

Checks related to reading the “.prop” files on Android can
also be relatively easily circumvented by using tools such as
the Xposed framework, Cydia substrate or even interposing
at the library or kernel level. The technique would be to
create “non-root” versions of these files (these versions have
all the settings a vanilla or stock Android would have) and
then intercept the open calls to these files and replace them
with a handle to the “non-root” versions.

3.3.3 Runtime Capabilities and Characteristics
Some other root checks rely on checking various aspects of
the system at runtime or of the process that is being exe-
cuted.

System mounted: Normally the“/system”partition on an
Android device is mounted “ro” (read only). Some rooting
methods require this partition to be remounted “rw” (read-
/write). We saw two variants of this check; the first simply
runs the mount command and looks for a “rw” flag, the
second actually attempts to create a file under “/system/”
or “/data/”. If the file is successfully created, it implies the
mount is “rw”.

Ability to mount: A related method we discovered ac-
tually attempts to mount the “/system” partition with the
command “mount -o remount,rw /system”, and then check-
ing if the return code was 0.

User ID: A curious check we found in one case was the
app getting the current user id (UID) of the app as it was
running and checking if it was running as root (UID 0). This
is curious because as far as we know, even on a rooted phone
any app started by Zygote (the Android process tasked with
actually launching apps) gets it’s own unique (non 0) UID.
However, it is possible that an app would request root access
via intent (Section 3.1) and then issue the UID check.

As with the other checks, using the Android system intercep-
tion tools or library interposition makes it straightforward
to evade them. Calls to mount or id can be intercepted and
their results modified to make it appear that (for instance)
the “/system” partition is not mounted read/write, and/or
arbitrarily change the return code from these processes.

3.4 Security Focused Applications
In this section we present our results for the most popular
security focused applications available in the Google Play
store at the time of writing. These apps provide multiple
functions, but the primary focus for them all is detecting
malware installed on the device and evaluating the devices’
overall security posture. There are two main reasons that
we target security applications in our analysis. The first
reason is that security focused applications are in place to
warn about security issues including that a device is“rooted”
whereas most other categories of applications do not need
to differentiate between rooted and non-rooted devices. The

motivation for this is that rooting a device potentially opens
it up to more damage from malware than non-rooted devices,
because all aspects of the system from the lowest level can
be accessed and modified. Second, some of the vendors that
provide security applications also provide BYOD solutions
and we were interested in comparing the strength of the
security mechanisms between their different applications to
see if the corporate centric apps have stronger detection or
protection since they are often used for enforcing compliance
to policies.

In our analysis, we shockingly discovered that the major-
ity of the checks found are in the form of the code snippet
depicted in Figure 2. These checks correspond to the tech-
niques described in Section 3.3.1.

Table 3.4 presents our detailed results, using the following
columns:

• Company Name Name of the company that created
the app

• Static su Checks for su binary using hardcoded paths
(e.g., /sbin/su)

• Relative su Checks for su binary using PATH search

• Test Keys Checks for custom build of Android

• ACL Prog Checks for privilege escalation package

• App List Searches for known superuser packages in-
stalled

• Mount /system Tests whether “/system” is mounted
rw

• UID 0 Checks if running as root (or can escalate)

• Total Checks Count of distinct methods used to check
for root

• App Installs Google play reported count of number
of installations

It is interesting to note that none of these applications lever-
age native code for the purpose of detecting root access (or,
if they do, it is not immediately apparent from static analy-
sis of the included binaries). Instead they rely on Java code,
making them vulnerable to known root evasion programs [4,
1]. Also only one mobile security application (provided by
Avast) takes advantage of root access to offer advanced fea-
tures to users (a firewall using iptables).

There are a few notable findings from our investigation us-
ing static analysis that we detail. The most interesting root
check capability in a mobile security application is present
in Kaspersky’s “Kaspersky Internet Security”. First of all,
it has the most comprehensive Java based root check of all
the applications we analyzed, including each of the three
types of checks documented in Section 3.3. It also uses the
“safest” check for the su binary, utilizing the which com-
mand to automatically search all executable paths. But the
most interesting part of the Kaspersky root check is that
it is intentionally and cleverly hidden from our basic static
analysis checks. Specifically, the code used for the root check
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public stat ic boolean d ( )
{

St r ing [ ] a r rayOfStr ing = new St r ing [ 3 ] ;
a r rayOfStr ing [ 0 ] = ”/ system/bin /su ” ;
ar rayOfStr ing [ 1 ] = ”/ system/xbin/su ” ;
ar rayOfStr ing [ 2 ] = ”/ sb in /su ” ;
int i = arrayOfStr ing . l ength ;
int j = 0 ;
while ( j < i )
{

St r ing s t r = arrayOfStr ing [ j ] ;
i f (new F i l e ( s t r ) . e x i s t s ( ) )

return true ;
j += 1 ;

}
return fa l se ;

}

Figure 2: Example of the most commonly used code
used to assess if a device has root access.

is not directly included, but extracted as a “.jar” file at run-
time, which is then dynamically loaded and called via re-
flection. In order to find the “.jar” and “.dex” to decompile,
we actually needed to load the app and copy the files from
the application data directory on a phone/emulator at run-
time. This finding is also interesting because it implies that
some developers at least are taking note of the simplicity of
static analysis as well as the ease of circumventing the most
common root checks today.

It is likely that in the future application developers will make
it more difficult to determine statically exactly how they are
checking for root access. Currently, it is relatively simple in
almost all cases to decompile an APK to discover how a
root check is done, and easily circumvented due to the root
check being done using the standard Java/Android APIs.
Also, while many of these apps have some level of obfusca-
tion in place to make analysis of the decompiled Smali/Java
more difficult, it is not sufficient to hide strings (such as “Su-
peruser.apk” and “/system/xbin/su”), or program flow in a
way to actually hide what the code is doing. We believe
that more advanced code obfuscation will become the norm,
as well as more complex checks for root and other security
issues on Android as workarounds continue to be used.

3.5 BYOD Solutions
We next turn our focus to mobile device management (MDM)
apps for Android, and how they approach rooted devices.
In can be argued that MDM apps should provide stronger
checks for root. MDM apps indicate that a device is used
for business purposes. In this context, the data and com-
munications on those devices may not belong exclusively
to the end-user, but also a company, government, etc. A
rooted device provides users and attackers a greater ability
to circumvent restrictions placed on apps to secure data and
communications, and possibly misuse, leak or steal sensitive
information.

Unfortunately, the same methods (covered in Section 3.3)
used for security apps are the ones employed by most MDM
apps. We collected and analyzed the top Android MDM
applications (as of the time of writing) in the same way as
for security apps detailed in Section 3.4. In addition to well
known MDM application vendors, we also attempted wher-

ever possible to analyze MDM solutions from companies that
also have security apps, to see if they exhibit any difference
in root detection behavior between the two types of apps.
In total we analyzed 19 MDM apps, with 5 from companies
that also provide security apps for Android. The results of
our analysis are provided in Table 2. We should note that
the count of app installs for these MDM solutions are those
provided by the Google Play store, and thus may not accu-
rately represent actual install counts, because entities that
use them likely distribute the APKs to users directly, or may
preinstall MDM on managed devices.

Our analysis led us to a number on interesting findings re-
lated to root detection in the enterprise MDM solutions.

Lack of root detection: Based on static analysis alone,
we failed to find any of the common root detection code in
the MobileIron, Deutsche Telekom and Panda MDM apps.
However, we found references in the code to compliance
settings for MobileIron. It relates to the Cisco AnyCon-
nect VPN package that includes a root detection check. It
is possible that MobileIron is leveraging this code to iden-
tify whether or not a device is rooted. The code is appar-
ently checking whether a root only version of the app is
installed (com.cisco.anyconnect.vpn.android.rooted), which
would not be a very robust check to use. It is also possible
that MobileIron’s source is sufficiently obfuscated to evade
our straightforward root detection checks, though we did not
notice much sophistication in the obfuscation used (unen-
crypted strings and straightforward decompilation). MDM
apps require enrollment with a server and it is highly possi-
ble that a policy for “root” check gets pushed only once the
device is enrolled in the case of MobileIron.

Native code: For VMware’s airwatch MDM agent, we
found references to a root detection check that is called by
a native library. The library libcoredevice.so is not par-
ticularly difficult to reverse and sheds light on the checks
used. The bulk of the checks are in the method getDe-
viceState(JNIEnv *, jobject *) where the presence of
the binary su is checked for with an exec along with a search
of the installed packages. Airwatch also retrieves a list of in-
stalled applications as part of the root check. In addition to
the VMware native code detection, we found that the MDM
solution provided by Excitor also leverages native code. In
this case, the library used was easily reversed, giving us a
clear picture of the detection methods used. It uses three of
the well known root checks that we have covered, attempt-
ing to find the su binary and privilege escalation package
in standard (static) locations. From this perspective, the
native root check is not much more useful, though it would
manage to work around the method RootCloak uses to hide
root. These native code checks in some sense make the re-
versing of root checks harder for attackers.

Breadth: We were impressed by the apparent effort that
went into making IBM’s MDM solution as rigorous and in-
depth as possible. To begin with, none of their checks are
static, meaning they search for binaries and packages in an
extensible manner. Unlike nearly all other solutions we ob-
served, the code searches for binaries other than su that
could provide escalation, and checks for each in multiple lo-
cations dynamically. Furthermore, more than one root ACL
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Company Static Relative Test ACL App Mount UID Total App
Name su su Keys Prog List /system 0 Checks Installs
AVAST X X 2 100M-500M
Lookout X X X 3 100M-500M

Cleanmaster X 1 100M-500M
Qihoo X 1 100M-500M
AVG X 1 100M-500M

McAfee 0 10M-50M
Norton X 1 10M-50M
NQ Labs X X X 3 10M-50M
Kaspersky X X X X 4 10M-50M
Trustlook X X X 3 10M-50M

Avira X X X 3 10M-50M
Trend X X 2 1M-5M
ESET X X X 3 1M-5M

CY Security X X 2 .5M-1M
Panda 0 .5M-1M
Sophos 0 .1M-.5M

Table 1: Summary comparison of the root checks in place for the top security applications from the Google
Play store.

management package is searched for, and in multiple pos-
sible places. Finally a list of packages that enable root are
searched for, as well as common packages used to hide root.
While we were impressed with the number and rigorous na-
ture of the detection, we were luckily unimpressed with the
code obfuscation. Once decompiled, we were able to eas-
ily reconstruct the source and strings to identify how root
checking was done. Obfuscating the source and possibly en-
crypting strings in the binary would go a long way to foiling
simple reverse engineering.

Security/MDM comparison: We looked at the solutions
for five vendors that supply both Android security and MDM
apps, and discovered a few small surprises. First, one of the
five (McAfee) has no checks for root we were able to find in
their security offering, but we did find them in their MDM
offering. As stated previously, root detection is likely more
important for MDM solutions, so this makes some sense.
Both Kaspersky and Symantec use the same code across
their solutions. However, Kaspersky’s code for root detec-
tion is hidden from trivial decompilation in the security app,
but unobfuscated and easily found in the MDM solution.
This indicates either a different build process (meaning they
were not intending to hide root detection in the first place)
or less concern that the MDM solution would be tampered
with. Panda does not seem to provide root detection either
for their security or MDM solution.

In summary, we found that most MDM solutions include
some checks for rooted devices, as we expected. MDM apps
are meant to enforce policy on BYOD devices, and thus it
makes sense for them to attempt to detect rooted devices as
they pose a security risk to enterprise apps and data. Even
so, there were some apps in which we were unable to discover
root detection code using static analysis due to use of native
libraries and possibly some intentional obfuscation. In order
to definitively find out if and how these apps are performing
root detection we would need to turn to dynamic analysis
of the apps while they are running. Unfortunately, MDM
apps require a subscription or connection to a management

service provided by the enterprise they are intended to work
with. This makes it difficult to run these apps and trigger
the full functionality to allow us to see what they are doing.

3.6 Summary
In this section we detailed how an Android device becomes
“rooted”, and how privileges are currently managed through
the use of a supervisor application. We then presented an
overview of a custom toolset we used for searching APKs
automatically to determine what types of checks they use to
determine the rooted status of a device. We then discussed
in detail the commonly used checks for root, and how they
can be evaded. Next we presented our findings from the use
of our toolset to analyze the top security and BYOD/MDM
apps in the Google Play store.

Our findings show that most apps use some combination of
the different methods of detecting rooted devices, seemingly
arbitrarily. Most root detection is done directly from the
Java code used which makes up the bulk of most apps, with
only a few using native code to do so. Most apps tested
also do not obfuscate their code (native or Java), making
static analysis and reverse engineering sufficient to discover
what they are doing. For nearly all of the apps, common
root hiding programs are sufficient to fool the root detec-
tion. There are a few recommendations we can make to
improve root detection. First, checks should be performed
natively to avoid the simplest avoidance methods. Second,
code and strings should be obfuscated in code to foil näıve
static analysis such as we presented in this paper. Third, as
many checks as possible should be implemented. Root detec-
tion is used infrequently and the overhead of using one check
or ten checks is insignificant. Finally, more advanced checks
that are not as easily avoided should be put into place. For
instance, listing installed apps as part of a root check or
checking su apps against known signatures are rarely used,
but can prevent against simple evasion techniques such as
renaming packages or moving/renaming the su binaries.
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Company Static Relative Test ACL App Mount UID Total App
Name su su Keys Prog List /system 0 Checks Installs

MobileIron 0 1M-5M
VMware X X X X 4 1M-5M

Kaspersky X X X X 4 500k-1M
Citrix X X X 3 100k-500k
IBM X X X X X 5 100k-500k
SAP X X X 3 100k-500k

McAfee X X X 3 100k-500k
Excitor* X X X 3 50k-100k

AVG X 1 10k-50k
Symantec X 1 10k-50k

Deutsche TK 0 10k-50k
GLOBO X X 1 10k-50k
Tangoe X X X 3 10k-50k

Soti X X 2 10k-50k
Amtel X X X 3 5k-10k
Dell X X X 3 5k-10k

Wavelink 0 5k-10k

Good X X X X 4 1k-5k1

Panda 0 1k-5k

Table 2: Popular enterprise mobility management apps and those from companies that provide both MDM
and security apps.

4. ANDROPOSER
In our research, most of our analysis was based on statically
reverse engineering the applications. However we wanted to
combine this with dynamic analysis to make sure our find-
ings were correct and observable at runtime. For this, we
initially created “AndroPoser”. AndroPoser is a library we
inject into Android processes leveraging a feature of the dy-
namic linker that allows us to transparently modify the run-
time behavior of selected functions using LD PRELOAD.
This dynamic library interposition allowed us to hook func-
tions and modify the data they manipulate and/or their re-
turn code. We realized that this could be used not only as a
support tool for our analysis, but also to subdue any native
code that checks for evidence of root access.

Implementation:

AndroPoser has been implemented in C and is a little over
300 lines of code. A code sample of the basic functionality
for the “open” libc function call is illustrated in Figure 3,
and the same basic pattern is used to hook other selected
functions. It is important to note that in order to inter-
pose on a function, the interposer code needs to have the
exact same method signature. Once the method signature
is matched the implementation is straightforward: obtain a
pointer to the original symbol, then either invoke the real
symbol’s implementation and return its original value (as we
show in our example), or perform some other operation be-
fore returning any arbitrary value. If we were to modify the
example to evade root detection in Figure 3, we would check
if “open” were called for “/system/bin/su”, and instead the
injected library would always return −1, indicating to the
caller that the file does not exist, whether or not it actually
is present. An exhaustive list of hooked functions required
to circumvent all checks is omitted, but some oft used ex-

amples are libc functions such as “access”, “execve”, “open”,
“stat” and “system”.

int open ( const char∗ path , int mode , . . . )
{

int r e t ;
int (∗ r ea l open ) ( const char ∗ , int , . . . ) ;
r e a l open = dlsym (RTLD NEXT, ”open ” ) ;

a n d r o i d l o g p r i n t (ANDROID LOG DEBUG,
”AndroPoser : OPEN” , ”Path : {%s}” , path ) ;

i f ( strcmp ( path , ”/ system/bin /su ”) ==0)
return −1;

r e t = rea l open ( path , mode ) ;
return r e t ; ;

}

Figure 3: Example of AndroPoser hooks

On a Linux platform, setting LD PRELOAD is simple: the
command to be executed is simply prefixed with LD PRELOAD.
However, on Android it is slightly different due to the com-
plicated execution process for an application. To set An-
droPoser for a given package Android offers a way to do so
with the setprop command and an example is depicted in
Figure 4.

setprop wrap . com . package . id
‘ ‘LD PRELOAD=/data/ androposer . so ’ ’

Figure 4: Setting AndroPoser for a given package

Evaluation: In order to evaluate AndroPoser, we included
counter measures for all the root detection mechanisms pre-
sented in Section 3. The results are that AndroPoser was
able to fool all known methods, presented in Section 3, into
reporting that a device is non-rooted while it is. Moreover
it succeeds in cases where commonly used root evasion ap-
plications failed, including native code checks. Table 3 com-
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pares AndroPoser with two common root evasion applica-
tions. Since each application takes a different action (or no
action) upon discovering a device is rooted, we implemented
each of the root checks we encountered in a standalone An-
droid app which simply reports whether root was detected
or not. We then tested this app and each of the methods
individually with Androposer in order to fill in Table 3.

Root Check Andro- Root- Hide My
Type Poser Cloak Root

Static Path X X X
Relative Path X X X
Native Code X NO NO
ACL Prog X X NO

UID X NO NO

Table 3: AndroPoser Evaluation

5. CONCLUSION
In this paper we analyzed security focused applications as
well as BYOD solutions that check for evidence that a device
is“rooted”. We dissected a sample of the most popular appli-
cations currently available for Android (using Google Play)
and uncovered the shocking simplicity of most of them. We
identified some applications that have been built to evade
such checks, and work in most cases due to the simplicity
of the checks. We also noted that the blind spot for these
root-evasion apps is native code, as the frameworks they are
based on do not support interception of native function calls.
We then discussed a small proof of concept that can bridge
that gap, using library interposition to evade all the checks
that we identified for both Java and native code. While we
strongly believe that “root” identification is crucial, espe-
cially for MDM and BYOD to enforce policies on enrolled
devices, we demonstrated that even security focused appli-
cations fail to do so reliably and that data reported by such
applications should not be blindly trusted.

As future work we plan on further improving our automated
analysis to include triggering functionality in the Java and
native code without needing to run the full app in order
to improve our detection results. As part of this, we will
extend our automated static analysis to include some auto-
mated dynamic analysis as well. Also for future work we
would like to investigate the possibility of using of a Trusted
Platform Module (TPM) on Android devices to collect reli-
able, trustworthy information reported from devices about
their state.
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