
Efficient Routing for Cost Effective Scale-out Data Architectures

Ashwin Narayan
Williams College

ashwin.narayan@williams.edu

Vuk Marković
University of Novi Sad

mvukmarko@gmail.com

Natalia Postawa
Adam Mickiewicz University in Poznań

np96924@st.amu.edu.pl

Anna King
University College Cork

111396801@umail.ucc.ie

Alejandro Morales
University of California, Los Angeles

ahmorales@math.ucla.edu

K. Ashwin Kumar
Veritas Labs

ashwin.kayyoor@veritas.com

Petros Efstathopoulos
Symantec Research Labs

petros efstathopoulos@symantec.com

Abstract—
In large scale-out data architectures, data are distributed and

replicated across several machines. Queries/tasks to such data
architectures, are sent to a router which determines the machines
containing the requested data. Ideally, to reduce the overall cost
of analytics, the smallest set of machines required to satisfy the
query should be returned by the router. Mathematically, this
can be modeled as the set cover problem, which is NP-hard.
Given large number of incoming queries in real-time, it is often
impractical to compute set cover for each incoming query to
perform routing. In this paper, we propose a novel technique to
speedup the routing of a large number of real-time queries while
minimizing the number of machines that each query touches
(query span). We demonstrate that by analyzing the correlation
between known queries and performing query clustering, we
can reduce the set cover computation time, thereby significantly
speeding up routing of unknown queries. Experiments show that
our incremental set cover-based routing is 2.5 times faster and can
return on average 50% fewer machines per query when compared
to repeated greedy set cover and baseline routing techniques.

I. INTRODUCTION

One of the most popular approaches to handle the increas-
ing volume of data is to use a cluster of commodity machines
to parallelize the compute tasks (scale-out approach). Scale-out
is typically achieved by partitioning the data across multiple
machines. Node failures present an important problem for
scale-out architectures resulting in data unavailability. In order
to tolerate machine failures and to improve data availability,
data replication is typically employed. Although large-scale
systems deployed over scale-out architectures enable us to
efficiently address the challenges related to the volume of
data, processing speed and and data variety, we note that
these architectures are prone to resource inefficiencies. Also,
the issue of minimizing resource consumption in executing
large-scale data analysis tasks is not a focus of many data
systems that are developed to date. In fact, it is easy to see
that many of the design decisions made, especially in scale-
out architectures, can typically reduce overall execution times,
but can lead to inefficient use of resources [1][2][3]. As the
field matures and the demands on computing infrastructure
grow, many design decisions need to be re-visited with the
goal of minimizing resource consumption. Furthermore, an-
other impetus is provided by the increasing awareness that
the energy needs of the computing infrastructure, typically
proportional to the resource consumption, are growing rapidly
and are responsible for a large fraction of the total cost of
providing the computing services. To minimize the scale-
out overhead, it is often useful to control the unnecessary
spreading out of compute tasks across multiple machines.

Recent works [1][2][3][4][5] have demonstrated that mini-
mizing the number of machines that a query or a compute
task touches (query span) can achieve multiple benefits, such
as: minimization of communication overheads, lessening total
resource consumption, reducing overall energy footprint and
minimization of distributed transactions costs.

A. The Problem
In a scaled-out data model, when a query arrives to the

query router, it is forwarded to a subset of machines that
contain the data items required to satisfy the query. In such a
data setup, a query is represented as the subset of data needed
for its execution. As the data are distributed, this implies
that queries need to be routed to multiple machines hosting
the necessary data. To avoid unnecessary scale-out overheads,
the size of the set of machines needed to cover the query
should be minimal [1][2][3]. Determining such a minimal set
is mathematically stated as the set cover problem, which is
an NP-hard problem. The most popular approximate solution
of the set cover problem is a greedy algorithm. However,
running this algorithm on each query can be very expensive
or unfeasible when several million queries arrive all at once or
in real-time (one at a time) at machines with load constraints.
Therefore, in order to speed up the routing of queries, we
want to reuse previous set cover computations across queries
without sacrificing optimality. In this work, we consider a
generic model where a query can be either a database query,
web query, map-reduce job or any other task that touches a
set of machines to access multiple data items.

There is a large amount of literature available on single
query set cover problems (discussed in Section II). However,
little work has been done on sharing set cover computation
across multiple queries. We developed an algorithm that
will solve set cover for multiple queries more efficiently
than repeating the greedy set cover algorithm for each query,
and with better optimality than the current algorithm in use
(see Section VII-A2). Our framework essentially analyzes the
history of queries to cluster them and uses that information to
process the new incoming queries in real-time. Our evaluation
of the clustering and processing algorithms for both frame-
works shows that both sets are fast and have good optimality.

The key contributions of our work are as follows:

• Our work is the first to enable sharing of set cover computa-
tions across the input sets (queries) in real-time and amortize
the routing costs for queries while minimizing the average
query span.

• We systematically divide the problem into three phases:
clustering the known queries, finding their covers, and, with

2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

2375-0227/16 $31.00 © 2016 IEEE

DOI 10.1109/MASCOTS.2016.29

424

the information from the second phase, covering the rest of
the queries as they arrive in real time.

• We propose a novel entropy based real-time clustering
algorithm to cluster the queries arriving in real-time to
solve the problem at hand. Additionally, we introduce a new
variant of greedy set cover algorithm that can cover a query
Qi with respect to another correlated query Qj .

• Extensive experimentation on real-world and synthetic
datasets shows that our incremental set cover-based routing
is 2.5× faster and can return on an average 50% fewer
machines per query when compared to repeated greedy set
cover and baseline routing techniques.

The remainder of the paper is structured as follows. Sec-
tions II and III present related work and problem background.
In Section IV we describe our query clustering algorithm.
Section V explains how we deal with the clusters once they
are created and processing of real-time queries in Section VI.
Finally, Section VII discusses the experimental evaluation
of our techniques on both real-world and synthetic datasets,
followed by conclusion.

II. RELATED WORK

SCHISM by Curino et al., [4] is one of the early stud-
ies in this area that primarily focuses on minimizing the
number of machines a database transaction touches, thereby
improving the overall system throughput. In the context of
distributed information retrieval Kulkarni et al., [5] show that
minimizing the number of document shards per query can
reduce the overall query cost. The above related work does
not focus on speeding up query routing. Later, Quamar et
al., [2][1] presented SWORD, showing that in a scale-out
data replicated system minimizing the number of machines
accessed per query/job (query span) can minimize the overall
energy consumption and reduce communication overhead for
distributed analytical workloads. In addition, in the context
of transactional workloads, they show that minimizing query
span can reduce the number of distributed transactions, thereby
significantly increasing throughput. In their work, however,
the router executes the greedy set cover algorithm for each
query in order to minimize the query span, which can become
increasingly inefficient as the number of queries increases. Our
work essentially complements all the above discussed efforts,
with our primary goal being to improve the query routing
performance while retaining the optimality by sharing the set
cover computations among the queries.

There are numerous variants of the set cover problem,
such as an online set cover problem [6] where algorithms
get the input in streaming fashion. Another variant is, k-set
cover problem [7] where the size of each selected set does not
exceed k. Most of the variants deal with a single universe as
input [8][9][10], whereas in our work, we deal with multiple
inputs (queries in our case). Our work is the first to enable
sharing of set cover computations across the inputs/queries
thereby improving the routing performance significantly.

In this work, we take advantage of the fact that, in the
real world, queries are strongly correlated [11][12] and enable
sharing set cover computations across the queries. Our key
approach is to cluster the queries so that queries that are highly
similar belong in the same cluster. Queries are considered
highly similar if they share many of their data points. By
processing each cluster (instead of each query) we are able to
reduce the routing computation time. There is rich literature

on clustering queries to achieve various objectives. Baeza-
Yates et al., [13] perform clustering of search engine queries to
recommend topically similar queries for a given future query.
In order to analyze user interests and domain-specific vocab-
ulary, Chuang et al., [14] performed hierarchical Web query
clustering. There is very little work in using query clustering to
speed up query routing, while minimizing the average number
of machines per query for scale-out architectures. Our work
provides one of the very first solutions in this space.

Another study [15] describes the search engine query
clustering by analyzing the user logs where any two queries
are said to be similar if they touch similar documents. Our
approach follows this model, where a query is represented as a
set of data items that it touches, and similarity between queries
is determined by the similar data items they access.

III. PROBLEM BACKGROUND

Mathematically, the set cover problem can be described
as follows: given the finite universe Q, and a collection of
sets M = {S1, S2, . . . , Sm}, find a sub-collection we call
cover of Q, C ⊆ M , of minimal size, such that Q ⊆ ⋃C .
This problem is proven to be NP-hard [9]. Note that a brute
force search for a minimal cover requires looking at 2m

possible covers. Thus instead of finding the optimal solution,
approximation algorithms are used which trade optimality
for efficiency [16][10]. The most popular one uses a greedy
approach where at every stage of the algorithm, choose the set
that covers most of the so far uncovered part of Q, which is
a lnn approximation that runs in O(n) time.

The main focus of this work is the incremental set cover
problem. Mathematically, the only difference from the above
is that instead of covering only one universe Q, set covering is
performed on each universe Qi from a collection of universes
Q = {Q1, Q2, . . . , QN}. Using the greedy approach sepa-
rately on each Qi from Q is the naı̈ve approach, but when
N is large, running the greedy algorithm repeatedly becomes
unfeasible. We take advantage of information about previous
computations, storing information and using it later to compute
remaining covers faster. In this paper, elements in the universe
are called data, sets from M are machines and sets from Q
are queries. Realistically, it can be assumed that data are
distributed randomly on the machines with replication factor
of r.

IV. QUERY CLUSTERING

In order to speedup the set cover based routing, our key
idea is to reduce the number of queries needed to process.
More specifically, Given N queries, we want to cluster the
them into m groups (m << N) so that we can calculate
set cover for each cluster instead of calculating set cover for
each query. Once we calculate set cover for each cluster, next
step would be to classify each incoming real-time query to
one of the clusters and re-use the pre-computed set cover
solutions to speedup overall routing performance. To do so,
we employ clustering as the key technique for precomputation
of the queries. An ideal clustering algorithm would cluster
queries that had large common intersections with each other; it
would also be scalable since we are dealing with large numbers
of queries. In order to serve real-time queries we need an
incoming query to be quickly put into the correct cluster.

Most of the clustering algorithms in the literature require
the number of clusters to be given by the user. However, we do
not necessarily know the number of clusters beforehand. We

425

also want to be able to theoretically determine bounds for the
size of clusters, so our final algorithm can have bounds as well.
To that effect, we developed entropy-based real-time clustering
algorithm. Using entropy for clustering has precedent in the
literature (see [17]). Assume that we have our universe U of
size n, let K be a cluster containing queries Q1, . . . , Qm. Then
we can define the probability pj of data item j being in the
cluster K:

pj(K) =
1

|K|
|K|∑
i=1

χj(Qi) (1)

where the characteristic function χj is defined by:

χj(Q) =

{
1, j ∈ Q
0, j /∈ Q

(2)

Then we can define the entropy of the cluster, S(K) as

S(K) = −
n∑

j=1

pj(K) log2 pj(K)+(1−pj(K)) log2(1−pj(K))

(3)
This entropy function is useful because it peaks at p = 0.5

and is 0 at p = 0 and p = 1. Assume we are considering a
query Q and seeing if it should join cluster K. For any data
element j ∈ Q, if most of the elements in K do not contain j,
then adding Q to K would increase the entropy; conversely if
most of the elements contain j, then adding Q would decrease
the entropy. Thus, minimizing entropy forces a high degree of
similarity between clusters.
The simpleEntropy Clustering Algorithm: We developed
a simple entropy-based algorithm. As each query Q comes in,
we compute the entropy of placing the query in each of the
current clusters and keep track of the cluster which minimizes
the expected entropy: given clusters K1, . . .Km in a clustering
K , the expected entropy is given by:

E(K) =
1

m

m∑
j=1

|Kj | · S(Kj) (4)

If this entropy is above the threshold described below, the
query starts its own cluster. Otherwise, the query is placed
into the cluster that minimizes entropy.

Suppose we are trying to decide if query Q = {x1, . . . , xn}
should be put into cluster K. Let pi be the frequency with
which xi is in the clusters of K. Then define the set

T (Q,K) = {xi ∈ Q : pi ≥ θ1}
for some threshold θ1. We say that Q is eligible for placement
in C if |T (Q,C)| ≥ θ2|Q| for some other threshold θ2.
Essentially, we say that Q is eligible for placement in K
only if “most of the elements in Q are common in K,” where
“most” and “common” correspond to θ1 and θ2 and are user-
defined. Of course, we should have 0 ≤ θ1, θ2 ≤ 1. Then,
given a clustering K with clusters K1, . . . ,Km, we create a
new cluster for a query Q only when Q is not eligible for
placement into any of the Ki. This forces most of the values
in the query to ‘agree’ with the general structure of the cluster.

The goal is an algorithm that generates clusters with low
entropy. Let us say that a low-entropy cluster, a cluster for
which more than half the data elements contained in it have
probability at least 0.9, is a tight cluster. The opposite is
a loose cluster, i.e. many elements have probability close

to 0.5. Pseudocode and detailed analysis of simpleEntropy
clustering algorithm with proofs is provided in the complete
version of this paper [18].

V. CLUSTER PROCESSING

Once our queries are clustered, the goal is to effectively
process the clusters as a whole instead of processing each
query individually. To that end, we first introduce our so-called
BetterGreedy algorithm, which is a modified version of the
standard greedy algorithm more suited to this problem.

A. The BetterGreedy algorithm
Recall that the standard greedy algorithm covers a query

Q with a small number of machines. The BetterGreedy
algorithm is performed on a query Q1 with respect to another
query Q2.. At stage k, let Qk ⊂ Q1 be the still uncovered
elements of Q1. We choose the machine M∗ that contains
the most elements of Qk. In the standard greedy algorithm, if
there is a tie, an M∗ is chosen arbitrarily. In BetterGreedy,
if there is a tie, we choose M∗ so that it also maximizes the
elements covered in Q2. See Figure 1(a) for a visual example.

B. Analysis of the BetterGreedy Algorithm
To make the algorithm efficient, we maintain a dictionary

of lists called sets of size. Each key in this dictionary is
the size of the intersection of each machine with the current
uncovered set (and this dictionary is updated at each stage).
Corresponding value is a set of all machines of that size. If
there are multiple machines under the same key (i.e. they have
the same size with respect to the uncovered elements of Q1),
greedy set cover algorithm breaks tie by choosing random
machine within a particular size key. However, in the case
of our BetterGreedy algorithm, they are sorted according
to the size of their intersection with Q2 \ Q1. While this
additional sorting makes the algorithm worse than standard
greedy approach in the worst case (since all the machines could
be the same size in Q1), in practice, our clustering strives to
make Q2 \Q1 small, and so the algorithm is fast enough.

C. Processing Simple Clusters
In this section we describe the most basic clusters and our

ways to process them.
Nested Queries: Consider the most simple query cluster: just
two queries, Q1 and Q2, such that Q1 ⊂ Q2. One might
suggest to simply find a cover only for Q2, using the greedy
algorithm, and use it as a cover for both Q1 and Q2. In practice,
this approach does not perform well. Figure 1(a) with caption
explains how our approach solves the problem judiciously.
Intersecting Queries: Here we consider a simple cluster with
two queries, Q1 and Q2 such that Q1 ∩ Q2 �= ∅. Figure 1(b)
present visual representation and description of our technique.
In summary, we run the BetterGreedy once and greedy
algorithm twice instead of just running the greedy algorithm
twice. However, in the first case, those two greedy algorithms
and the BetterGreedy algorithm are performed on a smaller
total size than two greedy algorithms in the second case. Our
algorithm never processes the same data point twice, while
the obvious greedy algorithm on Q1 and Q2 does. In terms
of optimality of the covers obtained in this way, they are on
average 0.15 machines (each) larger than the covers we would
get using the greedy algorithm.

426

Q1
Q2a

b

c

d

e

M1

M2

(a) Illustration of
BetterGreedy

Q1Q2 a
bc

de

(b) Visual representation of
the query intersection algo-
rithm

Fig. 1. In (a), we see an example of BetterGreedy. Assume region a has
already been covered, and we have two machines M1 and M2 that cover
regions b and c of Q1 respectively, and let these regions be the same size.
While the standard greedy algorithm would pick from M1 and M2 randomly,
BetterGreedy chooses M1 because the size of region d is bigger than the
size of region e. Figure (b) demonstrates that we run the algorithm on the
intersection (region a) and the striped sections (regions b and c), thus covering
Q1 and Q2. Then we simply run the greedy algorithm on the remaining
uncovered sections (regions d and e) to get the full covering. So, for example,
the covering of Q1 is given by the coverings of regions a, b, and d.

D. The General Cluster Processing Algorithm (GCPA)
Using ideas from the previous sections, we developed an

algorithm for processing any cluster. We call it the General
Cluster Processing Algorithm (GCPA). The algorithm, in the
simplest terms, goes as follows: 1) Assign a value we call
depth to each data unit appearing in queries in our cluster. The
depth of a data element is the number of queries that data unit
is in. For example, consider a visual representation of a cluster
on Figure 2(a). On the same figure under Figure 2(b) shows
depths of different parts of the cluster. 2) Divide all data units
into sets we call data parts according to the following rule:
two data items are in the same data part if and only if they are
contained in exactly the same queries. This will partition the
union of the cluster. Also, we keep track of which parts make
up each query (which we store in a hash table). 3) We cover the
data parts with our desired algorithm (greedy, BetterGreedy,
. . .) 4) For each query we return the union of covers of data
parts that make up that query as its cover.

This algorithm can process any shape of a given cluster and
allows for a choice of the algorithm used to cover separate data
parts. The big advantage of this algorithm is that each data unit
(or data part) will be processed only once, instead of multiple
times as it would be if we were to use the greedy algorithm
on each query separately. While dividing the cluster up into
its constituent data parts is intensive, this is all pre-computing,
and can be done at anytime once the queries are known.

Since BetterGreedy chooses machines that cover as many
elements in the cluster as a whole as possible, the covers
of the data parts overlap, and makes their union smaller.
One thing that can also be used in our favor is that when
covering a certain part, we might actually cover some pieces
of parts of smaller depths, as illustrated in Figure 2(c). Then,
instead of covering the whole of those parts, we can cover
just the uncovered elements. Figure 2 shows how this works
step by step. This version of GCPA, in which we use the
greedy algorithm, we call GCPA G. Another option is to apply
BetterGreedy algorithm on the data parts with respect to
the union of all queries containing that data part and can be
denoted as GCPA BG. As we will see in the next section, this
algorithm gives a major improvement in the optimality of the
covers compared to GCPA G.

VI. QUERY PROCESSING IN REAL-TIME

In our handling of real-time processing, we assume that
we know everything about a certain fraction of the incoming

1 1

1

2

2

2

2
3 3

3

4

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of our algorithm for general cluster processing. In (a) we see
the initial state of our cluster of 4 queries. In (b) we see the calculated depths.
From (c)-(f) we see in color the part we are processing, and in falling color
pattern the cover we end up actually getting. This example shows that instead
of doing the greedy algorithm 4 times, we end up doing it 11 times. However,
the total size of the data that our algorithm processes is much smaller than
doing greedy 4 times because of the overlap in the queries

queries beforehand (call this the pre-real-time set), and we
get information about the remaining queries only when these
queries arrive (the real-time set). To process query in real-time
the algorithm uses clusters formed in pre-processing stage.

A. The Real-time Algorithm
To effectively solve this problem, we take advantage of

the real-time applicability of the simpleEntropy clustering
algorithm. We know from experiments [18] that, we only need
to process a small fraction of incoming queries (∼ 20%) to
generate most of our clusters (∼ 75%). Thus, we cluster the
pre-real-time set of queries, and run one of the GCPA algorithms
on the resulting clusters, storing some extra information which
will be explained below. Then, we use this stored information
to process the incoming queries quickly with a degree of
optimality, as we explain below.

Given a cluster K and subset of queries in that cluster P ,
a data part is the set of all elements in the intersection of
the queries in P but not contained in any of the queries in
K \P . This implies that all the elements in the same data part
have the same depth in the cluster. Figure 3 helps explain the
concept.

A

A

B A B

Fig. 3. In the first picture the red area (A) is a part. In the second picture
(A) and (B) areas are different parts, because, although they have the same
depth, they are made from the intersection of different queries. In the third
picture (A) and (B) areas are different parts, as they have different depth.

After running one of the GCPA algorithms, the cluster is
processed from largest to smallest depth. The G-part pgi is the
set of elements in the cover produced when GCPA covers all
elements in part pi that are not in any previous G-part. Note
that G-parts also partition our cluster.

To manage processing queries in real time, the algorithm
makes use of queries previously covered in clustering process.
An array T is created such that for each data item it stores the
G-part containing this data item. In other words, element T [i]
is the G-part containing element i. For each G-part, we also
store the machines that cover that G-part (this information is
calculated and stored when GCPA is run on the non-real-time
queries). The last data structure used in this algorithm is a
hash table H , which stores, for each data element, a list of

427

machines covering this data item. In each step the algorithm
checks which G-part contains each data item and then for each
G-part it checks which machines cover this G-part. Then those
machines are added to the set of solutions (if they are not yet
in this set). Then for each data item, which was not taken into
consideration in any G-part, the algorithm checks in a hash
table if any of the machines in the set of solutions covers
the chosen data element. In the last step, we cover any still
uncovered elements with the greedy algorithm. Data elements
on which the greedy algorithm is run form a new G-part.

When a query Q of a length k comes in, the goal is
to quickly put Q into its appropriate cluster, so the above
algorithm can be run. Since the greedy algorithm is linear in
the length of the query, if it takes more than linear time to
put a query into a cluster, our algorithm would be slower than
just running the greedy algorithm on the query. Thus, we need
to develop a faster method of putting a query into a cluster.
We implemented a straightforward solution. Instead of looking
at all O(k) potential clusters a query could go into, we just
choose one of the elements of the query at random, and choose
one of the potential clusters it is in at random. We call this the
fast clustering method, as opposed to the full method (which
is O(k2)).

VII. EXPERIMENTAL EVALUATION

A. Setup
1) Datasets: We run our experiments on both synthetic and

real-world datasets. The sizes considered in this work are the
following: each data unit is replicated 3 times and we consider
cluster of 50 homogenous machines.
Synthetic Dataset: The total number of data items that we
consider is 100K. We generate about 50K queries with certain
correlation between them, and each query accesses between 6
and 15 data items. We note that all experiments in this section
are done by averaging the results from 1M runs. Following is
an explanation of the correlated query generation:

Correlated Query Workload Generation: A sample set of
queries is needed to test the effectiveness of a set cover
algorithm. As mentioned in Section III the data is distributed
randomly on the machines and the queries are correlated. To
generate these queries we use random graphs. In this context,
vertices counted by n represent data and edges represent
relations of the data. We use a modified DFS algorithm on
the random graph to generate nearly highly correlated random
queries.
Real-world Dataset: We consider TREC Category B Section
1 dataset which consists of 50 million English pages. For
queries we consider 40 million AOL search queries. In order
to process these 50 million documents to document shards,
we perform K-means clustering using Apache Mahout where
K=10000. We consider each document shard as a data item
in this paper. These document shards are distributed across
50 homogenous machines and are 3-way replicated. Each
AOL web query is run through Apache Lucene to get top 20
document shards. Then we run our incremental set cover based
routing to route queries to appropriate machines containing
relevant document shards.

Overall, we evaluate our algorithms on a set of 50K
synthetically generated queries generated from a graph with
np = .993 and on real-world dataset. 20K queries from syn-
thetic dataset and 8M queries from real-world dataset among
them are used to create clusters and our routing approach is

tested on remaining 30K queries from synthetic dataset and
32M queries from real-world dataset.

2) Baseline: When a query Q is received a request is sent
to all machines that contains an element of Q. The machines
are added to the set cover by the order in which they respond,
until the query is covered. The first machine to respond is
automatically added to the cover. The next machine to respond
is added if it contains any element from the query that is not
yet in the cover. This process is continued until all elements
of the query Q are covered.

3) Machine: The experiments were run on a Intel Core i7
quad core with hyperthreading CPU 2.93GHz, 16GB RAM,
Linux Mint 13. We create multiple logical partitions within this
setup and treat each logical partition as a separate machine.

B. Experimental Comparison of Cluster Processing Algo-
rithms

Here, we compare our techniques with two reference algo-
rithms and show that our algorithms are both fast and optimal.
The first reference algorithm is the one primarily evaluated in
the papers by Kumar and Quamar et al., [1][2][3], we call
it N Greedy. This is simply running the greedy algorithm
on each query independently. On the other hand, the two
algorithms that we have developed and implemented are the
GCPA with the greedy algorithm (GCPA G) and GCPA with
BetterGreedy (GCPA BG). The major difference between the
reference algorithms and our algorithms is that we are using
clustering to exploit the correlations and similarities of the
incoming queries.

We compare the run-time and optimality (average number
of machines that a query touches) of our algorithms and
the two reference algorithms on both synthetic and real-
world datasets. Our algorithms perform considerably faster
than N Greedy and are also faster than the smarter base-
line algorithm. In terms of optimality, both our algorithms
considerably outperform the standard baseline algorithm as
shown in Figures 4(a) to 4(d). When evaluating with synthetic
dataset, as shown in Figure 4(a) and 4(c), our technique is
about 2.5× faster when compared to repeated greedy technique
N Greedy and selects 50% fewer machines when compared
to the baseline. On the other hand, we evaluate on GCPA-BG
for the real-world dataset because it has better optimality, and
in the real-time case, the time penalty for using GCPA-BG
over GCPA-G is only relevant in the pre-computing stage. For
real-world dataset case, as shown in Figures 4(b) and 4(d),
our technique is about 2× faster when compared to repeated
greedy technique N Greedy and selects 32% fewer machines
when compared to baseline routing technique. The error bars
shown are one standard deviation long. The results of our
experiments provide strong indication that our algorithm is
indeed an effective method for incremental set cover, in that it
is faster than N Greedy and more optimal than the baseline.

In terms of optimality, it is also important to do a pairwise
comparison of cover lengths (i.e. does our algorithm perform
better for queries of any size). Taking the average as we have
done in Figure 4(c) masks potentially important variation. We
want to ensure that our algorithm effectively handles queries
of all sizes. In Figures 5(a) and 5(b), we compare the query-
by-query performance (in terms of optimality) of our two
algorithms against N Greedy for the synthetic dataset. The
x-axis is the number of sets required to cover a query using
N Greedy. The y-axis, “Δ Cover Length”, is the length of the
cover given by our algorithm minus the length of the greedy

428

(a) Run-time for synthetic dataset (b) Run-time for real-world dataset (c) Optimality for synthetic dataset (d) Optimality for real-world dataset

Fig. 4. Comparison of run-time and optimality (average query span) of our algorithms on synthetic dataset and real-world dataset.

GCPA-DL Optimality vs N-Greedy

�
��
�
�
�
��
	

�
�

Greedy Cover Size

1.000

1.000

0.999

0.987

0.909
0.635

0.016

6

5

4

3

2

1

0

-1

-2

-3
0 2 4 6 8 10 12

(a) GCPA DL vs.
N Greedy for synthetic
dataset

GCPA-G Optimality vs N-Greedy

Greedy Cover Size

�
��
�
�
�
��
	

�
�

1.000
1.000

0.999
0.993
0.972
0.910
0.782
0.565
0.300

0.002

10

8

6

4

2

0

-2
0 2 4 6 8 10 12

(b) GCPA G vs.
N Greedy for synthetic
dataset

GCPA Cover Size

�
��
�
�
�
��
	

�
�

GCPA Optimality vs Baseline
40

30

20

10

0

-10

-20

-30
-5 0 5 10 15 20 25 30 35 40

(c) GCPA vs. Baseline
for real-world dataset

Fig. 5. Pairwise comparisons of optimality for our algorithms.

cover. The number next to the y-axis at y = k shows the
normalized proportion of queries for which the GCPA cover
is at most k machines larger than the N Greedy. The size of
the circle indicates the number of queries at that coordinate.
With GCPA BG, we see that more than 90% of all queries are
covered with at most one more machine than the greedy cover,
and for the majority of queries, the covers are the same size.
The GCPA G algorithm does not perform quite as well. Even in
this case, the majority of queries are covered using only one
more machine than the greedy cover. Since GCPA BG is slower
than GCPA G, users can choose their algorithm based on their
preference for speed or optimality.

On the other hand, in Figure 5(c), we evaluate the perfor-
mance of our real-time algorithm on the real-world dataset on a
query-by-query basis. For each query, we record the number of
machines used to cover it using our algorithm and the number
of machines required to cover it using the baseline algorithm
and record the difference, i.e. the “Δ Cover Length” on the y-
axis is the size of the baseline cover minus the size of our
algorithm’s cover. The area of the circle at point (x, y) is
proportional the number of queries for which our algorithm
used x machines to cover and for which the difference in
cover length is y. Thus, the total area of the points above
the y = 0 line represents where our algorithm outperforms the
baseline algorithm. We see in the figure that the vast majority
(96.5%) of the queries are covered more efficiently by our
algorithm than by the baseline algorithm. In conclusion, we
have delivered an algorithm that is significantly faster than
N Greedy and also more optimal than the baseline algorithm.

VIII. CONCLUSION

In this paper, we presented an efficient routing technique
based on novel concept of incremental set cover computation.
Key idea is to reuse the parts of set cover computations
for previously processed queries to efficiently route real-time
queries such that each query possibly touches a minimum
number of machines for its execution. To enable the sharing of
set cover computations across the queries, we take advantage
of correlations between the queries and reuse the parts of

already computed set covers to cover the remaining queries as
they arrive in real-time. We evaluate our techniques using both
real-world TREC with AOL datasets, and synthetic workloads.
We demonstrate that our approach can speedup the routing
of queries significantly when compared to repeated greedy set
cover approach without trading optimality. We believe that our
work is extremely generic and can benefit variety of scale-out
data architectures such as distributed databases, distributed IR,
map-reduce, and routing of VMs on scale-out clusters.

REFERENCES

[1] K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller, “Sword:
Workload-aware data placement and replica selection for cloud data
management systems,” The VLDB Journal, vol. 23, no. 6, pp. 845–870,
Dec. 2014.

[2] A. Quamar, K. A. Kumar, and A. Deshpande, “Sword: Scalable
workload-aware data placement for transactional workloads,” in EDBT,
2013, pp. 430–441.

[3] A. K. Kayyoor, “Minimization of resource consumption through work-
load consolidation in large-scale distributed data platforms,” Digital
Repository at the University of Maryland, 2014.

[4] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” VLDB, vol. 3,
no. 1-2, pp. 48–57, Sep. 2010.

[5] A. Kulkarni and J. Callan, “Selective search: Efficient and effective
search of large textual collections,” ACM Trans. Inf. Syst., vol. 33, no. 4,
pp. 17:1–17:33, 2015.

[6] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor, “The online
set cover problem,” SIAM J. Comput., vol. 39, no. 2, pp. 361–370, 2009.

[7] A. Levin, “Approximating the unweighted k-set cover problem: Greedy
meets local search,” in Approximation and Online Algorithms, 2007,
vol. 4368, pp. 290–301.

[8] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications. CRC Press, 2013.

[9] J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., 2005.

[10] V. V. Vazirani, Approximation Algorithms. Springer Science &
Business Media, 2013.

[11] Z. Zhao, R. Song, X. Xie, X. He, and Y. Zhuang, “Mobile query
recommendation via tensor function learning,” in IJCAI, 2015, pp.
4084–4090.

[12] N. Gupta, L. Kot, S. Roy, G. Bender, J. Gehrke, and C. Koch,
“Entangled queries: enabling declarative data-driven coordination,” in
SIGMOD, 2011, pp. 673–684.

[13] R. Baeza-Yates, C. Hurtado, and M. Mendoza, “Query recommendation
using query logs in search engines,” in EDBT, 2004, vol. 3268, pp. 588–
596.

[14] S.-L. Chuang and L.-F. Chien, “Towards automatic generation of query
taxonomy: a hierarchical query clustering approach,” in ICDM, 2002,
pp. 75–82.

[15] “Query clustering using user logs,” ACM Trans. Inf. Syst., vol. 20, no. 1,
pp. 59–81, 2002.

[16] V. T. Paschos, “A survey of approximately optimal solutions to some
covering and packing problems,” CSUR, vol. 29, no. 2, pp. 171–209,
1997.

[17] D. Barbará, Y. Li, and J. Couto, “COOLCAT: An entropy-based
algorithm for categorical clustering,” in CIKM. ACM, 2002, pp. 582–
589.

[18] A. Narayan et al, “Efficient routing for cost effective scale-out data
architectures,” CoRR, vol. abs/1606.08884, 2013.

429

