
Smoke Detector: Cross-Product Intrusion Detection With Weak
Indicators

Kevin A. Roundy
Symantec Research Labs

kevin roundy@symantec.com

Acar Tamersoy
Symantec Research Labs

acar tamersoy@symantec.com

Michael Spertus
Symantec Corporation

mike spertus@symantec.com

Michael Hart
Symantec Research Labs

michael hart@symantec.com

Daniel Kats
Symantec Research Labs

daniel kats@symantec.com

Ma�eo Dell’Amico
Symantec Research Labs

ma�eo dellamico@symantec.com

Robert Sco�
Symantec Corporation
rsco�@sentryds.com

Abstract
�e central task of a Security Incident and Event Manager (SIEM)
or Managed Security Service Provider (MSSP) is to detect security
incidents on the basis of tens of thousands of event types coming
from many kinds of security products. We present Smoke Detector,
which processes trillions of security events with the Random Walk
with Restart (RWR) algorithm, inferring high order relationships
between known security incidents and imperfect secondary security
events (smoke) to �nd undiscovered security incidents (�re). By
�nding previously undetected incidents, Smoke Detector’s RWR
algorithm is able to increase the MSSP’s critical incident count by
19% with a 1.3% FP rate.

Perhaps equally importantly, our approach o�ers signi�cant
bene�ts beyond increased incident detection: (1) It provides a robust
approach for leveraging Big Data sensor nets to increase adversarial
resistance of protected networks; (2) Our event-scoring techniques
enable e�cient discovery of primary indicators of compromise; (3)
Our con�dence scores provide intuition and tuning capabilities for
Smoke Detector’s discovered security incidents, aiding incident
display and response.

1 INTRODUCTION
�e massive volume and diversity of security events collected by se-
curity products today present challenges to traditional approaches
to intrusion detection. Among others, email, host, and network
security products are logging an increasing variety and volume
of security events while analysts are already overburdened with
a glut of security-related information. Security Incident and Event
Managers (SIEM) have been developed to distill massive amounts
of security data from multiple products into modest numbers of
actionable security incidents. Managed Security Service Providers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2017, San Juan, PR, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5345-8/17/12. . . $15.00
DOI: 10.1145/3134600.3134645

(MSSPs) address the same task, but on behalf of multiple customers,
and therefore have even more security events to manage, from more
products, and with greater scalability challenges. We studied these
challenges in the context of a leading Managed Security Services
Provider, which receives nearly two trillion security event instances
per month, with more than 70 thousand distinct types seen in a typ-
ical month. �ese events are sent from tens of thousands of security
devices, representing one hundred distinct security products.

When a SIEM or MSSP raises a security incident, it is usually
based on the existence of a Primary Indicator of Compromise event,
such as an anti-virus detection or blacklisted URL in the company’s
security logs [19]. �e presence of a primary indicator furnishes
su�cient evidence to directly warrant the creation of a security
incident noti�cation when it �res under pre-speci�ed conditions.
�e remainder of security events are treated as unreliable Secondary
Indicators, which include generic security and system events that
are not necessarily a�ack-related. �is classi�cation can be made
by the vendor of the security event, the security device, the SIEM,
or by expert analysts in the Security Operations Center (SOC) of
the MSSP or enterprise, typically with signi�cant manual e�ort.
In many SIEMs and MSSPs, large collections of expert rules are
created and tuned (at signi�cant cost) to identify combinations of
primary indicators that should trigger an incident.

�e identi�cation of primary indicators is a major undertaking
that is prone to mistakes because the number of di�erent event
types is so large and evolves so rapidly. Furthermore, a�ackers
actively work to evade primary indicators by purchasing security
products and tweaking their malware or a�ack until the product
no longer detects it. For these a�acks, any detection must be on
the basis of secondary indicators. �e mature sub-disciplines of in-
trusion detection, which include network anomaly detection, alert
fusion [2, 10], alert correlation [33, 34], and root-cause analysis
all focus on identifying intrusions by identifying instances of sec-
ondary indicators that are malicious or anomalous. �e data sets
for which the prior art was developed have either consisted of
collections of homogeneous events coming from a single product,
or have normalized the alerts so that a single model could be ap-
plied across di�erent events [34]. By contrast, Smoke Detector is
designed for the status quo in the SIEM and MSSP, whose events
are in many cases produced by the intrusion detection systems

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA K. Roundy et al.

Instance Count Con�dence Signature Name
44,104,172,561 0.01 TCP Connection
21,396,843,738 0.00 Tra�c
19,493,074,472 0.00 UPD Connection
15,161,094,870 0.00 Firewall
14,586,679,865 0.02 Teardown TCP Connection
6,905,911,034 0.00 Teardown UDP Connection
6,762,250,252 0.00 Flow Session Close
4,350,063,989 0.01 PIX-6-305012
3,790,388,695 0.01 Connection Discarded
2,626,258,118 0.02 TPC Cache Miss
2,381,224,704 0.00 HTTP Get
2,109,964,562 0.02 Packet Permi�ed
1,676,587,290 0.02 Connection Allowed

Table 1: Instance counts for the most frequent events seen
by an MSSP over a 30-day period.

mentioned above. Security events di�er greatly in the reliability
with which they identify infections and are so di�erent in nature
that much would be lost in an a�empt to treat all events uniformly,
as most of the prior art has done. Rather, we use the relationships
between these distinct event types to each other, and to known
security incidents (when available), in building Smoke Detector, a
scalable graph-based security-incident detection framework that
makes the following contributions:

(1) Smoke Detector replicates 96.4% of the primary-indicator-
driven detection capabilities of a leading MSSP at a 1% False Positive
(FP) rate, and discovering 19% more critical incidents at a 1.3% FP
rate.

(2) We adapt the Random Walk with Restart (RWR) algorithm [9,
21], originally proposed for image segmentation, to cross-product
incident detection with good adversarial resistance properties. To
the best of our knowledge, RWR has not been applied to security
problems outside of a social network context.

(3) We automatically score the con�dence with which an event
type indicates the existence of serious security incident. �ese
scores provide security analysts with intuition and enable them to
tune Smoke Detector and suppress false positives.

2 BACKGROUND
In MSSP and SIEM data, machines with unusually high event counts
rarely exhibit serious security problems and are instead sympto-
matic of issues such as network outages and product miscon�g-
urations. �is occurs largely because the most frequent events
produced by security products are generic tra�c logs and status
messages, as seen in Figure 1. While these generic events are useful
in that they contain metadata that can be judged anomalous and
lead to additional detections, by the time they are observed by a
SIEM or MSSP, they have typically also passed through the intru-
sion detection systems deployed by various products, which also
a�empt to detect anomalous behaviour and report those detections
to the MSSP or SIEM.

We therefore designed Smoke Detector to track the relation-
ships between known security incidents and security events such
that useful events are automatically identi�ed, enabling us to rank
possibly infected machines to detect novel incidents. Smoke De-
tector consists of two key components. First, it builds a graph that
captures the relationships between events and the machines on
which those events appear, using the Random Walk with Restart
algorithm to propagate information from known-infected machines
to the rest of the network. Smoke Detector’s second component
identi�es the conditional probability with which an event indicates
that a machine is infected as its con�dence score, and uses these
con�dence scores to provide intuition, but also to weight and tune
the graph used by Random Walk with Restart.

We proceed by describing our dataset in Section 3, our algo-
rithm’s graph-based techniques in Section 4 our con�dence scoring
algorithm in 5. Our implementation and its scalability properties
are described in Section 6, for which we present qualitative results
in Section 7 and a discussion of adversarial resistance in Section 8.
We discuss Related Work in Section 9, and conclude in Section 10.

3 DATA DESCRIPTION
In this work, we assume a dataset that consists of records of the
form < m[ti ,tj], s, l >. In this formulation, m[ti ,tj] is a window
of time between ti and tj during which machinem was observed.
We will henceforth refer to m[ti ,tj] as a machine-window wherever
appropriate for ease of explanation. �e security event that was
observed in relation to the machine-window is represented by s ,
which we elaborate on below. Finally, l indicates the location of
the source of the event, that is, whether it originated on a machine
that is internal or external to the enterprise. As noted by Lindqvist
and Porras [18], the source-location provides important context for
network a�ack events, such as port scans, which may be exceed-
ingly commonplace when externally sourced, but indicative of a
dangerous post-compromised machine a�empting lateral internal
movement otherwise. Since most network events involve two ma-
chines, they manifest as two records, one for the source machine
and the other for the destination machine.

Security events represent an security-relevant action recorded by
a security product, along with metadata that include a reference to
the machine on which it occurred, or, in the case of a network event,
the machines on which it occurred. Each security event represents
either a primary indicator or secondary indicator of compromise.
Primary indicators indicate the presence of a serious security is-
sue on a machine that may warrant remediation or preventative
action. �ese events are typically identi�ed and ve�ed by processes
that are manual-labor intensive. Examples of primary indicators
include anti-virus detections, post-compromise command and con-
trol tra�c, bu�er over�ows, and network a�acks, which may be
conditioned to have come from within the enterprise. All remain-
ing security events are classi�ed as secondary indicators, which
vary dramatically in their ability to indicate security issues. �e
spectrum ranges from serious events that ought to be re-classi�ed
as primary indicators, to events that raise no suspicion, but may
serve the purpose of providing context to a forensic investigation.

Some machine-windows in the dataset are known to contain
security incidents that have been veri�ed as representing serious

Smoke Detector: Cross-Product Intrusion Detection With Weak Indicators ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

Figure 1: We plot the distribution of events corresponding to
known security incidents relative to the mean timestamp of
the incident’s events. �e distribution of primary indicators
is also shown at 5x their actual rate to make them visible.

Time window each machine-window spans 1 day
Primary indicator security events 5,654
Secondary indicator security events 72,303
Machine-windows with security incidents 1,086
Unknown machine-windows 53,223,857
Earliest machine-window observed on March 9, 2017
Latest machine-window observed on April 24, 2017

Table 2: Summary statistics for the anonymized dataset pro-
vided by aManaged Security Services Provider for this work.

security problems. Each incident is then associated with some ma-
chine m between time window ti and tj . Most serious incidents
are raised because of the presence of a primary indicator within
this machine-window, but all secondary indicators that occur in
this machine-window are included in incident machine-windows as
well. �e remainder of the security events in the dataset correspond
to unknown machine-windows, that is, machine-windows that do
not correspond to a known security incident, but that may con-
tain security event data that analysts would classify as a security
incident if it were brought to their a�ention.

What is the best width for a machine-window? Since se-
curity alerts appear in bursts corresponding both to benign and
malicious actions, it is desirable for machine-windows to be small
enough to prevent the admixture of too much benign behavior
in security-incident windows, while keeping the windows large
enough to capture the majority of malicious behavior that occurs
around an incident. To answer this question, we studied the dis-
tribution of events around known security incidents and present
this in Figure 1. We observe a large spike in event activity in the
central 2 hours of a security incident, the majority of events �re
in the central 24-hour period, and by the time 2 days have passed,

Figure 2: Example bipartite graph between security events
(le� side) and machine-windows (right side). �e values in-
side the security event nodes are their con�dence scores,
which indicate the strength of their association with prior
incidents. �e con�dence scores are used to assign nor-
malized weights to the edges to reduce false alarms and
for adversarial resistance. Our Smoke Detector algorithm
employs Random Walk with Restart on this graph to rank
the unknown machine-windows (bottom two in the �gure)
based on their relevance to the known security incidents for
analyst review towards undiscovering new incidents.

the event volume is dominated by background noise. Accordingly,
in obtaining a dataset from a leading MSSP we requested that the
length of each machine-window be set to 1 day as providing us with
a good tradeo�. Table 2 reports this and other summary statistics
of the anonymized dataset that we obtained.

4 INCIDENT RANKING & PRIORITIZATION
Given millions of unknown machine-windows, most of which con-
tain no primary indicators, how can an analyst identify the tiny
fraction of them that represent undetected security incidents? In
this section, we discuss our core methods for ranking and prioritiz-
ing the unknown machine-windows based on their likelihood of
containing an undiscovered incident. Toward this goal, we aimed
for a technique that can (i) operate in an one-class se�ing like
ours where the only class we have is that of known security in-
cidents (i.e., the unknown machine-windows do not constitute a
class of their own, as each might well contain an incident), (ii)
capture high-order, indirect relationships between security events
and machine-windows, such as that between the top and bo�om
machine-windows in Figure 2, (iii) produce a ranking of potential
incidents based on intuitive principles that can be easily consumed
by the analysts, and (iv) scale to large amounts of data. We con-
sidered a number of machine learning approaches, ranging from

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA K. Roundy et al.

traditional classi�cation and regression techniques to more complex
deep learning techniques. While some traditional machine learning
methods perform single-class classi�cation, output interpretable
results, and are scalable, they typically consider each data point
in isolation and hence cannot easily capture high-order relation-
ships. Deep learning techniques, on the other hand, can handle
a single class and capture high-order relationships, but they pro-
duce results that are o�en hard to interpret [12, 15] and scaling
these techniques to large amounts of data is still an active area of
research [6, 7, 13, 32].

�ese considerations led us to pursue a graph-based approach
as a method that satis�es our solution criteria and provides e�ec-
tive solutions. Accordingly, we model the relationships between
security events and machine-windows as a bipartite graph, and
use scalable algorithms to propagate information from machine
windows that contain security incidents to the rest of the graph.
�is formulation allows us to identify and rank unknown machine-
windows that are likely to contain a security incident. Our bipartite
graph represents each security event and machine-window as a
node, and contains directed edges between those security events
and machine-windows that appear together in the same record in
our dataset (one edge in each direction, see Figure 2).1 Overall, our
graph has 53,302,900 nodes and 183,610,432 edges.

�e intuition behind our approach is that the unknown machine-
windows in the graph that have the closest relationships to machine-
windows with known security incidents are most likely to contain
security incidents themselves. By adopting algorithms that measure
the relevance of machine-windows to known security incidents, we
are able to rank undiscovered incidents highly. More precisely, we
employ the Random Walk with Restart algorithm [9, 21] to identify
undiscovered incidents from among tens of millions of unknown-
machine-windows. To the best of our knowledge, the application
of this algorithm to incident ranking and prioritization is novel.

4.1 RandomWalk with Restart
Informally, a random walk with restart (RWR) over a graph can be
described as follows [28]. Consider a random particle that starts
from node i in the graph. �e particle iteratively transmits to its
neighboring nodes with a probability proportional to the corre-
sponding edge weights. Additionally, at each step, there is a chance
that the particle transports back to node i with probability c . �e
RWR score of node j with respect to node i is de�ned as the steady-
state probability that the particle will be found at node j . �e RWR
score of node j indicates its relevance to node i . For graphs with
multiple start nodes, the relevance scores of the nodes in the graph
are computed with respect to all the start nodes. �e restart mecha-
nism used by RWR ensures that the nodes that are most proximate
to start nodes have higher rank than distant nodes.

Formally, RWR can be de�ned as the following linear system:

®r = (1 − c)W̃ ®r + c®e (4.1)
where, assuming that the graph has n nodes, ®r is the 1 × n RWR
vector that contains the relevance scores for all the nodes, W̃ is
the column-normalized n × n adjacency matrix that contains the

1We generate two directed edges between a pair of security event and machine-window
to be able to assign di�erent edge weights depending on the source node (see Section 4).

weights of the edges between the nodes, c is the restart probability,
and ®e is the 1 × n starting vector with 1’s for the start nodes and
0’s for the remaining nodes. Directly solving Equation 4.1 involves
an expensive matrix inversion, with a total time complexity of
O(n3) [36]. In practice, the solution is approximated with the power
iteration method, where Equation 4.1 is initialized with an RWR
vector of all 1’s and solved iteratively with the RWR vector from
the (t − 1)th iteration used to update the RWR vector in the tth
iteration. For t iterations, this method costs O(tm), wherem is the
number of edges in the graph [36], improving the scalability of the
approach when it is run for a small number of iterations.

In our application of RWR to cross-product intrusion detection,
we select those machine-windows that correspond to known secu-
rity incidents as our start nodes, and we calculate the relevance of
all other unknown-machine windows and security events to these
start nodes. �ese relevance scores form a natural ranking over
the 52 million unknown machine-windows in our dataset, the most
relevant of which are highly likely to represent previously undis-
covered security incidents. Detection systems cannot be tuned to
suppress false-alarms cause frustration and are likely to cease to
be used. In designing Smoke Detector, therefore, it is vital that our
system be responsive to feedback from security analysts, but how
to do so? �e structure of the graph is entirely determined by event
data and should not be tampered with, and RWR measures rele-
vance to a single class of true positive nodes, with all other nodes
unknown. Neither does it make sense to associate a negative class
with false positives, as these will have been selected from among
the most suspicious machine-windows and are not as negative in
their nature as the average unknown machine-window.

�e way to achieve a tunable system lies in RWR’s use of edge-
weights. As mentioned above, when a random particle leaves a
machine-window, it selects an outbound edge to an a�ached se-
curity event with probability proportionate to the edge’s weight.
Future false-positive detections can therefore be prevented by ad-
justing edge weights in response to False Positive reports and other
forms of analyst feedback. For relevance scores to have a prob-
abilistic interpretation, RWR assumes that the adjacency matrix
of the input graph is column-normalized, meaning that the sum
of the weights of each node’s outgoing edges is 1. �en, the sim-
plest initial policy for se�ing the edge weights is to assign them
uniformly (i.e., each outgoing edge of a node with o out-neighbors
receives the weight 1/o), and while this choice does produce good
results, it is possible to do be�er by associating edge weights with
measurements of security-event quality. Accordingly, we assign
the edge weights associated with a security event based on the
conditional probability that a security incident will be raised if that
the event is observed in a machine-window, which we refer to as
the con�dence score for the event and describe in Section 5. An
example application of this edge weighting policy can be seen in
Figure 2, where, for each security event node, we set the weights of
all the outgoing edges to the con�dence score for the event, which
are then normalized, and for each machine-window node, we sum
the con�dence scores of all the in-neighbor events, which is then
distributed among the outgoing edges with weights in proportional
to the in-neighbor events’ scores.

Smoke Detector: Cross-Product Intrusion Detection With Weak Indicators ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

5 CONFIDENCE SCORING
Smoke Detector provides con�dence scores for security events, which
represent the conditional probability that a machine-window con-
tains a security incident given that the event was observed in rela-
tion to it. We seek to ful�ll three goals in providing these con�dence
scores. First, since novel security incidents identi�ed by Smoke De-
tector may consist of many events, these scores serve to bring the
most important events to the a�ention of the analyst. Second, these
conditional probabilities have a clear interpretation that analysts
can readily understand. �ird, these scores provide an intuitive
means by which the RWR algorithm can be tuned, and are used as
edge-weights in that algorithm.

While RWR can score the importance of security events in the
graph, its “relevance” scores do not ful�ll the three goals listed
above. Since RWR’s relevance score for an event is the steady-
state probability of a particle being found at the event in question,
these scores are extremely low and are furthermore, they have
a skewed distribution, bearing hardly any relation to the more
intuitive conditional probabilities that we provide as con�dence
scores through the techniques of this section.

5.1 Modeling Event Con�dence on Correlation
with Primary Indicators

To measure the conditional probability with which an event in-
dicates a serious compromise, we measure each security event’s
correlation with primary indicators. As de�ned in Section 3 pri-
mary indicators are those security events that should warrant the
raising of a security incident whenever they are observed. A set
of reliable primary indicators is typically easily obtained from any
MSSP or SIEM, as it these are fundamental to their incident detec-
tion methods [19]. Should such a set not be available, an adequate
set of primary indicators can be identi�ed with some manual e�ort
thanks to the naming conventions used by many security vendors
for high-�delity events, and through the numeric severity scores
that many of them provide. Since primary indicators trigger only
in the context of serious security issues, any instance of a security
event that happens in the same machine-window as a primary indi-
cator is likely to have triggered in response to malicious behavior.

Measuring con�dence on the basis of co-occurrence with primary
indicators is appealing because high scores can be explained and
justi�ed on the basis of primary indicators of known reliability.
More precisely, we score events based on the fraction of the time
in which they appear in the same machine-window as at least
one primary indicator. �e selection of machine-windows that are
24-hours in length o�er a good trade-o� between capturing the
majority of incidents associated with the incident and eliminating
background noise, as seen in Figure 1.

5.2 Con�dence Estimation With a Prior
Distribution

While MSSPs may record trillions of event instances per month,
rare event types may be observed only a handful of times. To en-
sure that we do not overestimate the con�dence of rare events, we
apply a skeptical prior belief of event con�dence into our scoring

model. �is ensures a low false positive rate, and that high con�-
dence scores are earned on the basis of su�cient evidence, which
promotes trust on the part of incident responders.

We model each event’s instances as a Bernoulli random variable.
An individual instance can be thought of as a trial, where a suc-
cessful trial is one that occurs within a compromise-related context.
We can formalize as:

θ ∼ Beta(α , β) (5.1)
yevent ∼ Bern(θ) (5.2)

�erefore, θ is drawn from skeptical prior belief of the distribu-
tion of event con�dence, which in turn in�uences the likelihood of
the event occurring in a compromise-related context. But how do
we choose α and β?

Figure 3: We plot a histogramof con�dence scoresmeasured
via maximum likelihood estimation for events that appear
10 or more times, and �t a beta distribution to the data (the
red curve). As this distribution is insu�ciently skeptical for
use as a prior probability distribution, we �t a second beta
distribution to the data, constraining its minimum value to
occur at con�dence = 0.9 (the blue curve).

We adapt Empirical Bayes techniques [4] to our purposes, model-
ing the prior probability distribution based on the data, and applying
Bayesian inference to arrive at the posterior probability distribution.
Our prior is a Beta distribution that we �t to events that have been
observed at least ten times. Since we desire our prior distribution
to be skeptical, rather than applying the best-�t Beta prior, which
is shown as the red curve in Figure 3 and has a minimum value at
roughly 60%, we solve for a more skeptical prior with minimum
value of 0.9, resulting a beta distribution prior with parameters
α = 0.0499 and β = 0.8944, which is shown as the blue curve in the
same �gure.�e resulting empirically motivated prior distribution
is generally skeptical about the con�dence of most events, but does
not rule out the existence of a small but important minority of
events that are highly indicative of machine compromise.

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA K. Roundy et al.

Figure 4: Partial display of events and metadata contribut-
ing to an incident detected by Smoke Detector. �e analyst
has clicked on an event to cause its con�dence score to be
explained in terms of its correlated ground-truth events.

5.3 Feedback�rough Transparency
By basing Smoke Detector’s con�dence scoring on correlation with
primary-indicator events, we are able provide intuition and trans-
parency into the relationship-based nature of our overall approach
and to prevent the mistrust that opaque models tend to engender.
Figure 4 shows how this transparency can be used in presenting
a Smoke Detector incident to an incident responder. To facilitate
feedback, we explain the con�dence of an event by exposing the
degree of support that each primary indicator contributes to its
score, based on its co-occurrence rate. In this particular case, the
“Unknown IP Protocol” event is shown to bear strong relation to
primary indicators that are more obviously severe.

�is window into our algorithm provides insight into the context
in which the event typically triggers, which may hint at the possi-
bility of a more serious underlying problem. �ird, when trained in
an MSSP, Smoke Detector a customer with few security products
can learn of alerts that non-deployed product likely would have
identi�ed had it been deployed. Finally, this transparency allows
analyst to reduce false positives by removing unreliable events that
should not be considered primary indicators for purposes of con-
�dence scoring. Similarly analysts may increase true positives by
identifying events that should re-classi�ed as primary indicators.

6 IMPLEMENTATION
Smoke Detector consists of two parts: incident detection based
on RWR and con�dence scoring. We focus the implementation
description of this section on the RWR algorithm, which dominates
the performance cost, since con�dence-score computations need to
be frequently computed and can be e�ciently calculated over the
RWR graph using the algorithm of Section 5.

To scale with the size of our workloads (upwards of 150 billion
events daily), we implemented RWR in Apache Spark, a framework
for running distributed computation on multi-node clusters, with
the aim of facilitating horizontal scaling [35].

0 50 100 150 200
Number of Edges (millions)

100

200

300

400

500

600

700

800

900

E
x
e
cu

ti
o
n
 T

im
e
 (

se
co

n
d
s)

Confidence-weighted Graph

Synthetic Graphs

Figure 5: Performance characteristics of our RWR imple-
mentation on both our con�dence-weighted and synthetic
graphs.

In implementing RWR, we perform the power iteration method
for 10 iterations, which is su�cient to achieve an accurate estima-
tion of steady-state probabilities [11]. We set its restart probability
c to 0.15, a value commonly used in practice [27].

As discussed in Section 4, the power-iteration method has a time
complexity linear in the number of edges [36]. To con�rm that
our implementation conforms to this expectation, we evaluated
it on Amazon EMR using a cluster of 15 machines, each of type
r4.2xlarge with eight cores and 61GB RAM. To that end, we modeled
several synthetic graphs of increasing edge counts on the structural
properties of our dataset. �ese synthetic graphs were also bipartite,
with the size of each partition and ratio of total edges proportionally
preserved. �e graphs were stored in an adjacency list format in an
object store [1]. Scalability results are shown in Figure 5, con�rming
that the algorithm scales linearly with the number of edges in the
graph, in accordance the theoretical bound. Runtime performance
on the real dataset is also shown.

7 EXPERIMENTS
In this section, we evaluate Smoke Detector based on its ability
to detect security incidents, and follow this with a discussion and
evaluation of its adversarial resistance in Section 8. We begin by
showing that Smoke Detector provides a straightforward, low-
maintenance method for replicating the critical incidents detected
by a leading MSSP with high coverage and accuracy. We then study
the machine-windows to which Smoke Detector gave the highest
rank, and present these to analysts to identify the percentage of
these detections that represent undiscovered security incidents.
Finally, we assess the ability that Smoke Detector’s con�dence
scores have in assisting analysts to identify primary indicators
of compromise that had previously been classi�ed as secondary
indicators.

Smoke Detector: Cross-Product Intrusion Detection With Weak Indicators ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

0.0 0.2 0.4 0.6 0.8 1.0
FP Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
P
 R

a
te

0.9638 TP rate at 0.01 FP rate
on confidence-weighted graph

Confidence

Uniform

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

FP Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
P
 R

a
te

Zoomed-in version of figure above

Confidence

Uniform

Figure 6: We show Receiver Operating Curves (ROC) to de-
scribe Smoke Detector’s ability to reconstruct critical MSSP
incidents triggered by primary indicators, achieving more
than 95.6% coverage (true positives, TP) at a 1% false posi-
tive (FP) rate with uniform edge weights and 96.4% coverage
with edge weights informed by event con�dence scores.

7.1 Detecting New and Existing MSSP Incidents
We commence our evaluation by examining Smoke Detector’s suit-
ability as a less expensive replacement for a leading MSSP’s iden-
ti�cation of critical severity incidents based on rules conditioned
on the presence of primary indicators. Freeing MSSPs and SIEMs
from such techniques is desirable given that the identi�cation of
primary indicators involves and the conditions under which they
should raise security incidents is a costly and largely manual pro-
cess. In replicating the MSSP’s incidents, it is not su�cient for
Smoke Detector to learn what the primary indicators are, as these
are quite prevalent in non-incidents, it is also necessary to identify
the conditions set by the MSSP for raising an incident when a pri-
mary indicator is present. To demonstrate that the RWR algorithm
can learn both the primary indicators and the conditions under

Severity Score Count Weighted Count Weighted %
Emergency 2 2 0.6%
Critical 74 234 80.4%
Warning 17 48 16.5%
Informational 3 3 1.0%
False Positive 4 4 1.4%
Totals 100 291 100%

Table 3: Result of having anMSSP’s incident responder eval-
uate 100 machine-windows sampled from the top 708 that
were identi�ed by Smoke Detector as containing probable
security incidents. �ese results indicate that Smoke Detec-
tor increases theMSSP’s volume of incidents that are critical
or above in severity by 19% at a 1.3% False Positive rate, while
also �nding some security incidents of lower value.

which they raise incidents, we compare the results of RWR with
con�dence-weighted edges to RWR with uniformly weighted edges,
for which no knowledge of primary indicators is granted to the
model.

Accordingly, we perform a 10-fold cross-validation experiment
in which the positive class represents machine-windows corre-
sponding to incidents of critical severity raised by of a primary
indicator, while the negative class consists of all unknown-machine
windows. �e results of this experiment are shown in Figure 6.
�e uniformly-weighted RWR model achieves 95.6% coverage of
True Positive (TP) incidents at 1% False Positive (FP) rate with no
prior knowledge of primary indicators or event quality. While the
weighted graph’s coverage is only modestly higher, 96.4% cover-
age at the same FP rate, its tunable weights allow us to obtain a
larger yield of valuable undiscovered security incidents in the 1% of
unknown-machine days that are treated as “False Positives” in this
experiment. �e use of uniform weights results resulted in a sur-
prisingly modest drop in classi�cation accuracy. �ese weights do
serve an important purpose however, in that the relevance rankings
produced by the weighted graph prioritize novel detections that
are relevant to known incidents through high-con�dence events
rather than on the basis of more prevalent lower-con�dence events,
as in the case of the uniformly weighted graph.

Since Smoke Detector’s primary goal is to �nd undiscovered
security incidents, we had a professional incident responder em-
ployed by the MSSP evaluate the top-ranked unknown machine-
windows identi�ed by Smoke Detector to determine whether they
contained legitimate security incidents. �is involved applying
RWR with con�dence-weighted edges to the 52 million unknown
machine-windows in our dataset. We presented the incident respon-
der with a sample of 100 of the top 708 machine-windows identifed
by RWR. To maximize the coverage of the analyst’s feedback, we
clustered the 708 machine-windows with the DBSCAN algorithm,
which yielded 25 clusters covering 30% of the machine-windows
(the rest were unclustered), and sent the analyst a representative
machine-window for each of these clusters, along with a strati�ed
sample of 75 additional machine-windows. By weighing the inci-
dents based on cluster size, we arrive at the results shown in Table

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA K. Roundy et al.

(a) Smoke Detector Incident Clusters (b) MSSP Incident Clusters

Figure 7: A two-dimensional representation of clustering
results applied to novel incidents identi�ed by Smoke De-
tector, and to pre-existing incidents detected by the MSSP.
Smoke Detector incidents are more diverse than the MSSP
incidents, which are dominated by a large cluster.

3. Of the 291 incidents that are represented in this sample, 236
were judged to be of critical severity or higher. Extrapolating from
this ratio, we expect that approximately 574 of the 708 top-ranked
machine-windows in our dataset represent critical incidents, which
represents a 19% increase in the number of critical incidents de-
tected by the MSSP over this time period, at a 1.4% False Positive
rate.

Next, we evaluate the diversity of the previously undiscovered
security incidents identi�ed by Smoke Detector in comparison to
the critical incidents detected by the MSSP. We were pleased to �nd
that the novel incidents found under these conditions are highly
diverse, even when compared to the MSSP’s incidents. To illustrate
this, we used t-Distributed Stochastic Neighbor Embedding (t-SNE)
[30] to produce a 2-dimensional clustering of 1000 Smoke Detector
incidents, and 1000 MSSP incidents from the same time-period.
Figure 7a shows that Smoke Detector produces many outliers and
small clusters, in clear contrast to the MSSP’s incidents, shown in
Figure 7b, which feature a dominant cluster.

7.2 Applying Smoke Detector to Primary
Indicator Classi�cation

In addition to incident detection, we wanted to examine whether
Smoke Detector’s con�dence generation algorithm could assist
with the important problem of detecting primary indicators in an
ecosystem of heterogeneous security devices from many vendors.
Traditionally, security events manually classi�ed into primary in-
dicators, and secondary events are classi�ed as supporting events,
and noise. Events labeled as noise are not considered to be use-
ful, and are ignored unless a customer speci�cally requests to see
all events associated with a machine. Supporting events show up
alongside primary indicators whenever there is an infection and
provide important context, while primary indicators are used to
raise new security incidents.

Keeping current accurate classi�cations is a critical challenge
for MSSPs and SIEMs for several reasons:

Figure 8: Result of re-classi�cation e�ort for events, fed
by candidate events identi�ed by Smoke Detector as having
con�dence above 0.9.

(1) MSSPs and SIEMs encounter many previously unseen event
types every day, making for a daunting manual classi�ca-
tion problem. For example, in a 30-day period, the MSSP
we studied encountered an average of 957 new event types
per day.

(2) With over a million event types actively tracked, even a
small error rate will lead to a large number of misclassi�ed
events over time.

(3) As the security landscape changes, the proper classi�cation
of an existing event type may change. Regular reexamina-
tion of all event types is impractical at the scale that MSSPs
and SIEMs have to deal with.

We posited that Smoke Detector’s con�dence scoring algorithm
could identify indicators with incorrect classi�cations. To this
end, MSSP analysts began a regular review process that has so
far resulted in the review of 840 event types that had a�ained a
con�dence score greater than 0.9 and that had been previously been
ignored as noise. �is reexamination resulted in 280 events pre-
viously regarded as noise being reclassi�ed as primary indicators,
and another 342 noise events reclassi�ed as supporting events (see
Figure 8 for the reclassi�cation rates of internally- and externally-
sourced events). As only 0.06% of events manually classi�ed over
the preceding 30 days had been re-classi�ed as primary indica-
tors, with 1.85% reclassi�ed as supporting events, Smoke Detector’s
identi�cation of a set of candidate events that consist of 33% pri-
mary indicators, and 41% supporting events was clearly a major
improvement over generic reexamination.

�e impact of these re-classi�ed events was tracked for 10 days,
resulting in enhancements to 224 validated security incidents being
published to 49 distinct monitored organizations. Of these incidents,
10 incidents occurring at nine distinct organizations were validated
as critical incidents on severity criteria closely tracking NIST-800-
601 [5], including seven Unauthorized Vulnerability Scans, two
Trojan Horse Infections, and one hack tool a�ack. Notably, for the
two Trojan Horse infections, Smoke Detector was responsible for

Smoke Detector: Cross-Product Intrusion Detection With Weak Indicators ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

Detection rates

Indicators evaded MSSP Smoke Detector

One primary 48.35% 67.21% TP rate at 0.1% FP rate
82.73% TP rate at 1% FP rate

Two primary 33.01% 56.1% TP rate at 0.1% FP rate
80% TP rate at 1% FP rate

Table 4: Incident detection rates in an adversarial setting
where the attacker evades primary indicators. �e MSSP re-
lies on primary indicators, hence their detection rates su�er
signi�cantly, where Smoke Detector manages to retain high
coverage by leveraging secondary indicators.

labeling the primary indicator, without which the infections would
have remained unidenti�ed.

8 ADVERSARIAL RESISTANCE DISCUSSION
For any detection system to maintain its e�ectiveness over time,
it is must be resistant to adversarial a�acks. In this section, we
discuss the adversarial methods that we believe are the most likely
to have a negative impact on Smoke Detector.

Attack 1: Evasion of primary indicators. We consider the
evasion of primary indicators to be the most probable a�ack against
Smoke Detector, since it is obviously bene�cial to the a�acker re-
gardless of whether Smoke Detector is deployed as a backup to the
individual security products that are in place to monitor the a�ack.
Such a�acks against primary detections, such as a�acking antimal-
ware so�ware by obfuscation are both practical and prevalent [20].
Likewise, it is reasonable to expect malware writers to purchase an
antivirus and not release their malware to the wild until they have
developed a version that is not detected. Such a�acks are evidently
costly, however, to the point of being beyond the means of many
a�ackers, since SIEMs and MSSPs are able to detect many serious
a�acks on the basis of primary indicators. We therefore assume an
adversarial model in which the a�acker has a constrained budget.

We run experiments to measure the extent by which primary-
indicator evasion degrades Smoke Detector’s ability to alert on
incidents relative to the MSSP, which detects incidents based on
the existence of one or more primary indicators. In the case of an
a�ack that triggers a single primary indicator and raises no other
security events at all in this se�ing, it is obvious that both Smoke
Detector and the MSSP perform equally badly, since there is no
evidence le� on which to base a detection. �e more interesting
case is that of an incident involving multiple events, of which
the a�acker is able to remove one or more primary indicators,
since machines that provide a single primary indicator are typically
poorly monitored and reporting of useful additional secondary
indicators can be easily accomplished through the reporting of
Windows Security Event Logs and Unix-system equivalents. As
shown in Table 4, when the a�acker evades one primary indicator
but secondary events remain, the MSSP’s detections are reduced
to the 48% of the original haul of incidents (those that were raised
by multiple primary indicators remain), while Smoke Detector’s
incident coverage retains 83% coverage at a 1% FP rate, thanks to its
ability to detect security incidents entirely on the basis of secondary

indicators. In the case of a more powerful a�acker capable of
evading two primary indicators (but not all secondary indicators),
Smoke Detector again outperforms traditional primary-indicator-
based detection techniques, retaining 80% coverage at a 1% FP rate,
while the MSSP’s coverage drops to 33%.

Attack 2: Drowning the signal in noise. It may prove less
expensive for an a�acker to drown out the signal provided by strong
indicators in noise than to prevent these events from triggering.
Such a�acks are not restricted to adversaries that have Smoke
Detector in mind, since human security analysts can easily miss
vital details in incidents that at times consist of millions of event
instances and hundreds of distinct event types, as in the case of
Denial of Service a�acks that mask the presence of a more severe
targeted a�ack [16]. �is aspect of the problem is addressed by
Smoke Detector’s con�dence scores, which allow the events that
compose a security incident to be listed in decreasing order of
con�dence, as shown in Figure 4.

To assess the impact of a noise-based a�ack on Smoke Detector’s
core detection capabilities, we added noise to known incidents,
both on con�dence-weighted and uniformly-weighted versions of
Smoke Detector’s graph, under the assumption that the con�dence
weights would provide increased resistance to an a�acker. �e
adversary a�empts to reduce the relevance rank of an a�ack by
triggering those security events that have the least relevance to
known security incidents, by establishing new edges between them
in the graph. We a�empted this a�ack under many conditions,
adding anywhere from 10 to 100 edges, and selecting the events
to which we connected the incident according to both black-box
policies (random selection of secondary indicators) and white-box
policies (a�acker has knowledge of event con�dence and relevance
rankings), and both on the con�dence-weighted and uniformly-
weighted graphs.

�e counter-intuitive result to our experiments was that adding
noise to security incidents has the unintended e�ect of increasing
its overall ranking, regardless of the graph’s weighting scheme.
�e result of one such adversarial experiment is shown in Figure
9, wherein we assumed adversaries that a�ach their incident to
100 security events, selected at random from the 10% least relevant
events in the con�dence-weighted graph. �is �gure contrasts the
results of doing so on Smoke Detector’s classi�cation accuracy, �nd-
ing that adding edges results only increases performance relative
to the non-adversarial se�ing. Our experiments have shown that
this e�ect is not due to the fact that multiple nodes are a�acked at
once in this evaluation, as adding edges to a single incident also
increases its rank relative to other machine-windows.

�e reason for which the noise-based a�ack fails is that adding
edges to a machine-window node increases its number of its incom-
ing edges, along which event nodes communicate their relevance
to the machine-window. �is has a net positive e�ect on the node’s
ranking as there is no normalization amongst a machine-window’s
incoming edges, yielding a net positive e�ect on the machine’s
relevance even if these additional edges come from events that
have low, but positive relevance.2 �is consideration more than

2�ere is a path between each security event and at least one incident in the graph,
hence all the events receive a positive relevance.

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA K. Roundy et al.

0.0 0.2 0.4 0.6 0.8 1.0
FP Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
P
 R

a
te

Attacker adds noise to incidents

Original graph

Attacked graph

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

FP Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
P
 R

a
te

Zoomed-in version of figure above

Original graph

Attacked graph

Figure 9: Smoke Detector’s detection rates in an adversarial
setting where the attacker adds noise to the incidents in the
con�dence-weighted graph. �e attack fails as new edges
further increase the relevance of the incidents.

counterbalances the diminished outgoing relevance of the machine-
window to high-value events, as the relevance of these events is
supported by other machine-windows that are not a�acked.

Attack 3: Altering the graph and its weights. We now con-
sider adversaries that control at least one machine in addition to
the machine-window on which they hope to evade detection. �at
is, they seek to modify Smoke Detector’s training data, which is
a daunting task given that MSSPs use big data systems compris-
ing trillions of event instances across tens of millions of machine
windows, each protected by its own sensor net of security devices.
A�acks are most likely to try to cause the rank of the primary
a�ack’s machine-window to drop into a range that has many false
positives by lowering the relevance of the events connected to
the primary a�ack’s machine-window. Consider a primary a�ack
consisting of events s1 and s2. �e adversary divides controlled
machines into two pools, one of which triggers event s1, the other
triggering s2, to avoid triggering both events from a single machine

as this would raise an incident that would increase the relevance of
events s1 and s2. �e broad class of a�acks that includes this one
has several limitations:

First, Smoke Detector treats a single instance of an event in a
machine-window no di�erently than millions of instances of the
same event in that window, so successful a�acks require the control
of many machines on multiple networks over a long period of time,
which is costly and increases the probability of detection.

Second, model inversion a�acks depend upon feedback from the
model, but this risk can be mitigated by providing limited precision
in the con�dence scores that Smoke Detector shares with customers
[8], and by sorting events alphabetically by name rather than by
rank when they have tied limited-precision score.

�ird, an e�ective training-set a�acks on Smoke Detector would
have to reduce the score of highly indicative events by triggering
them many times without raising a security incident, which is
di�cult and could culminate in the blacklisting or lost control of
a�acker-controlled machines.

Lastly, the adversary is more likely to have control of external
machines than enterprise-owned machines in su�cient numbers for
an a�ack, yet only internal machines can trigger events produced
by endpoint-protection products, rendering training-set a�acks on
anti-virus events, for instance, di�cult to carry out.

In summary, while these a�acks are surely not comprehensive
of all possibilities, Smoke Detector has important properties that
render it a di�cult target for an adversary, such as its ability to
capture high-order relationships, the relative inaccessibility of its
model to concerted model inversion a�empts, and its basis in big
data, which forces a�ackers to perform large-scale a�acks.

9 RELATEDWORK
Much of the prior art in intrusion analyzes large collections of sim-
ilar events to alert on a subset of malicious instances. By contrast,
Smoke Detector consumes raw event data that is intermixed with
the alerts generated by the prior art, and therefore treats events of
di�erent types as distinct entities of varying reliability. �e prior
art we discuss in this section includes techniques for event scor-
ing, alert fusion, alert correlation, and root-cause analysis, among
others.

M-Correlator [23] assigns priority scores to security events based
on context, such as the importance and vulnerability of targeted
assets. When such data is available it should be used and would
enable an approach based on M-Correlator to prioritize Smoke De-
tector incidents, whose event scores represent infection con�dence
rather than severity.

Beehive [34] provides important techniques for normalizing and
correlating the events provided by diverse collections of security
products (which are central challenges for MSSPs and SIEMs) so
that metadata is not lost, allowing anomaly detection algorithms
and blacklists to be applied e�ectively. Smoke Detector makes no
a�empt to identify anomalies in event types that would otherwise
not a�ract a�ention, as Beehive does, and would instead consume
Beehive’s detected anomalies as separate events.

Alert correlation and alert clustering techniques bear similar-
ity to Smoke Detector in their study of the relationships between
di�erent types of alerts. However, many of these methods strive

Smoke Detector: Cross-Product Intrusion Detection With Weak Indicators ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

to promote understanding and root-cause analysis for existing in-
cidents [22, 24, 31] rather than detect new incidents. Julisch [14]
summarizes large volumes of event data for human consumption,
so that anomalous events stand out to an analyst. Viinika et al. [33]
and Valdes and Skinner [29] reduce alerts into aggregate “meta-
alerts” for ease of consumption. �ese technique are valuable but
are not designed for a SIEM or MSSP se�ing, where events vary
widely di�erent nature and quality.

Alert Fusion refers to the problem of determining whether to
output an alert based on the result of multiple IDS models trained
over a common data set of event logs [2, 10, 25, 26], such as the
Darpa 2000 dataset [17]. �ese techniques are not designed for
underlying datasets that are as diverse as those of SIEMs and MSSPs.

Many expert systems for intrusion-detection build on P-BEST’s
seminal algorithm [18], which provides an inference language to
detect misuse and anomalies through production rules. While sim-
ilar techniques are deployed by SIEMs and MSSPs today, these
techniques are costly to maintain because of constant changes to
the underlying events that are being collected and monitored. In
Section 7 we evaluate Smoke Detector against an MSSP of this
type. Buckzak and Guven [3] describe many applications of Ma-
chine Learning and Data Mining to intrusion detection, from which
Smoke Detector di�ers in its use of a graphical model, which mod-
els relationships between known incidents, events and candidate
incidents.

10 CONCLUSION
We presented Smoke Detector, an intrusion detection system de-
signed for the challenges confronted by MSSPs and SIEMs, including
huge data volumes, diverse event types of greatly varying quality,
and continual event churn. We showed that Smoke Detector in-
creases the volume of detected critical incidents by 19% at a 1.3%
False Positive rate. Its con�dence scores provide intuition and a
tuning mechanism for Random Walk with Restart (RWR). Our im-
plementation of the RWR algorithm scales linearly with the size of
the data and works well in a distributed system on commodity hard-
ware. To the best of our knowledge, our use of the RWR represents
the �rst use of this algorithm for computer security applications
other than in the context of security for social networks [37].

11 ACKNOWLEDGMENTS
�anks to Lenore Zuck and Zhongkai Wen for helpful discussions
on improving this paper. �anks to Daniel Whalen for provide
feedback on the Smoke Detector algorithm and its detections.

REFERENCES
[1] Amazon. 2017. Amazon S3. h�ps://aws.amazon.com/s3/. (2017). Accessed:

2017-06-08.
[2] Tim Bass. 2000. Intrusion Detection Systems and Multisensor Data Fusion.

Commun. ACM 43, 4 (April 2000), 95–105.
[3] A. L. Buczak and E. Guven. 2016. A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys
Tutorials 18, 2 (Secondquarter 2016), 1153–1176. DOI:h�p://dx.doi.org/10.1109/
COMST.2015.2494502

[4] George Casella. 1985. An Introduction to Empirical Bayes Data Analysis. �e
American Statistician 39, 2 (May 1985), 83–87.

[5] Paul Cichonski, Tom Millar, Tim Grance, and Karen Scarfone. 2012. Computer
Security Incident Handling Guide. NIST Special Publication 800-61 Rev 2 (August
2012).

[6] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and
Jürgen Schmidhuber. 2011. Flexible, high performance convolutional neural
networks for image classi�cation. In International Joint Conference on Arti�cial
Intelligence (IJCAI).

[7] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov.
2014. Scalable object detection using deep neural networks. In IEEE Conference
on Computer Vision and Pa�ern Recognition (CVPR). 2147–2154.

[8] Ma�hew Fredrikson, Somesh Jha, and �omas Ristenpart. 2015. Model Inversion
A�acks that Exploit Con�dence Information and Basic Countermeasures. In
ACM Conference on Computer and Communications Security (CCS). Tokyo, Japan.

[9] Leo Grady. 2006. Random walks for image segmentation. IEEE transactions on
pa�ern analysis and machine intelligence 28, 11 (2006), 1768–1783.

[10] Guofei Gu, Alvaro A. Cardenas, and Wenke Lee. 2008. Principled Reasoning and
Practical Applications of Alert Fusion in Intrusion Detection Systems. In ACM
Symposium on InformAction, Computer and Communications Security (ASIACCS).
Tokyo, Japan.

[11] Taher Haveliwala. 1999. E�cient computation of PageRank. Technical Report.
Stanford.

[12] Fred Hohman, Nathan Hodas, and Duen Horng Chau. 2017. ShapeShop: Towards
Understanding Deep Learning Representations via Interactive Experimentation.
In 2017 CHI Conference Extended Abstracts on Human Factors in Computing
Systems. ACM, 1694–1699.

[13] Forrest N Iandola, Ma�hew W Moskewicz, Khalid Ashraf, and Kurt Keutzer.
2016. FireCa�e: near-linear acceleration of deep neural network training on
compute clusters. In IEEE Conference on Computer Vision and Pa�ern Recognition
(CVPR). 2592–2600.

[14] Klaus Julisch. 2003. Clustering Intrusion Detection Alarms to Support Root
Cause Analysis. ACM Transactions on Information Systems Security 6, 4 (Nov.
2003), 443–471. DOI:h�p://dx.doi.org/10.1145/950191.950192

[15] Minsuk Kahng, Pierre Andrews, Aditya Kalro, and Duen Horng Chau. 2017.
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models.
arXiv preprint arXiv:1704.01942 (2017).

[16] Kaspersky Lab. 2015. Denial of Service: How Businesses Evaluate the �reat of
DDoS A�acks. IT Security Risks Special Report Series (September 2015), 7.

[17] MIT Lincoln Laboratory. 2000. DARPA Intrusion Detection Scenario Speci�c
Data Sets. h�ps://www.ll.mit.edu/ideval/data/2000data.html. (2000).

[18] Ulf Lindqvist and Phillip A. Porras. 1999. Detecting Computer and Network
Misuse �rough the Production-Based Expert System Toolset (P-BEST). In Inter-
national Symposium on Security and Privacy (SP). Oakland, CA.

[19] David Miller, Shon Harris, Allen Harper, Stephen VanDyke, and Chris Blask.
2010. Security Information and Event Management (SIEM) Implementation (1st
ed.). McGraw Hill Education.

[20] P. O’Kane, S. Sezer, and K. McLaughlin. 2011. Obfuscation: �e Hidden Malware.
(May 2011), 41–47.

[21] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. 2004.
Automatic multimedia cross-modal correlation discovery. In ACM SIGKDD in-
ternational conference on Knowledge Discovery and Data Mining (KDD). ACM,
653–658.

[22] Roberto Perdisci, Giorgio Giacinto, and Fabio Roli. 2006. Alarm Clustering
for Intrusion Detection Systems in Computer Networks. Engineering Applied
Arti�cial Intelligence 19, 4 (June 2006), 429–438. DOI:h�p://dx.doi.org/10.1016/j.
engappai.2006.01.003

[23] Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. 2002. A Mission-Impact-
Based Approach to INFOSEC Alarm Correlation. In International Symposium on
Recent Advances in Intrusion Detection (RAID). Zurich, Switzerland, 95–114.

[24] Alireza Sadighian, José M. Fernandez, Antoine Lemay, and Saman T. Zargar. 2014.
ONTIDS: A Highly Flexible Context-Aware and Ontology-Based Alert Correlation
Framework. Springer International Publishing, Cham, 161–177. DOI:h�p://dx.
doi.org/10.1007/978-3-319-05302-8 10

[25] A. Sadighian, S. T. Zargar, J. M. Fernandez, and A. Lemay. 2013. Semantic-based
context-aware alert fusion for distributed Intrusion Detection Systems. In 2013
International Conference on Risks and Security of Internet and Systems (CRiSIS).
1–6. DOI:h�p://dx.doi.org/10.1109/CRiSIS.2013.6766352

[26] Mallikarjun Shankar, Nageswara Rao, and Stephen Batsell. 2003. Fusing Intru-
sion Data for Detection and Containment. In IEEE Military Communications
Conference (MILCOM). Ontario, Canada.

[27] Jimeng Sun, Huiming �, Deepayan Chakrabarti, and Christos Faloutsos. 2005.
Relevance search and anomaly detection in bipartite graphs. ACM SIGKDD
Explorations Newsle�er 7, 2 (2005), 48–55.

[28] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast Random Walk
with Restart and Its Applications. In International Conference on Data Mining
(ICDM). IEEE Computer Society, Washington, DC, USA, 613–622. DOI:h�p:
//dx.doi.org/10.1109/ICDM.2006.70

[29] Alfonso Valdes and Keith Skinner. 2001. Probabilistic Alert Correlation. In
International Symposium on Recent Advances in Intrusion Detection (RAID). Davis,
CA.

[30] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A. Kemmerer.
2004. A Comprehensive Approach to Intrusion Detection Alert Correlation. IEEE

https://aws.amazon.com/s3/
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1145/950191.950192
https://www.ll.mit.edu/ideval/data/2000data.html
http://dx.doi.org/10.1016/j.engappai.2006.01.003
http://dx.doi.org/10.1016/j.engappai.2006.01.003
http://dx.doi.org/10.1007/978-3-319-05302-8_10
http://dx.doi.org/10.1007/978-3-319-05302-8_10
http://dx.doi.org/10.1109/CRiSIS.2013.6766352
http://dx.doi.org/10.1109/ICDM.2006.70
http://dx.doi.org/10.1109/ICDM.2006.70

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA K. Roundy et al.

Transactions on Dependable Secure Computing 1, 3 (July 2004), 146–169. DOI:
h�p://dx.doi.org/10.1109/TDSC.2004.21

[31] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A. Kemmerer.
2004. A Comprehensive Approach to Intrusion Detection Alert Correlation. IEEE
Transactions on Dependable Secure Computing 1, 3 (July 2004), 146–169. DOI:
h�p://dx.doi.org/10.1109/TDSC.2004.21

[32] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the
speed of neural networks on CPUs. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, Vol. 1. 4.

[33] Jouni Viinikka, Hervé Debar, Ludovic Mé, and Renaud Séguier. 2006. Time
Series Modeling for IDS Alert Management. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS). ACM, New York, NY, USA,
102–113. DOI:h�p://dx.doi.org/10.1145/1128817.1128835

[34] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robertson,
Ari Juels, and Engin Kirda. Beehive: Large-Scale Log Analysis for Detecting
Suspicious Activity in Enterprise Networks. In Annual Computer Security Appli-
cations Conference (ACSAC).

[35] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Sco� Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In USENIX conference on Networked Systems Design and Implementation
(NSDI).

[36] Chao Zhang, Shan Jiang, Yucheng Chen, Yidan Sun, and Jiawei Han. 2015. Fast
inbound top-k query for random walk with restart. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases (ECML PKDD).
Springer, 608–624.

[37] Ziming Zhao, Gail-Joon Ahn, Hongxin Hu, and Deepinder Mahi. 2012. So-
cialImpact: Systematic Analysis of Underground Social Dynamics. In European
Symposium on Research in Computer Security (ESORICS).

http://dx.doi.org/10.1109/TDSC.2004.21
http://dx.doi.org/10.1109/TDSC.2004.21
http://dx.doi.org/10.1145/1128817.1128835

	1 Introduction
	2 Background
	3 Data Description
	4 Incident Ranking & Prioritization
	4.1 Random Walk with Restart

	5 Confidence Scoring
	5.1 Modeling Event Confidence on Correlation with Primary Indicators
	5.2 Confidence Estimation With a Prior Distribution
	5.3 Feedback Through Transparency

	6 Implementation
	7 Experiments
	7.1 Detecting New and Existing MSSP Incidents
	7.2 Applying Smoke Detector to Primary Indicator Classification

	8 Adversarial Resistance Discussion
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

