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ABSTRACT
Tremendous efforts have been dedicated to improving the effec-
tiveness of multi-label learning with incomplete label assignments.
Most of the current techniques assume that the input features of
data instances are complete. Nevertheless, the co-occurrence of
highly incomplete features and weak label assignments is a chal-
lenging and widely perceived issue in real-world multi-label learn-
ing applications due to a number of practical reasons including
incomplete data collection, moderate labels from annotators, etc.
Existing multi-label learning algorithms are not directly applicable
when the observed features are highly incomplete. In this work, we
attack this problem by proposing a weakly supervised multi-label
learning approach, based on the idea of collaborative embedding.
This approach provides a flexible framework to conduct efficient
multi-label classification at both transductive and inductive mode
by coupling the process of reconstructing missing features and
weak label assignments in a joint optimisation framework. It is
designed to collaboratively recover feature and label information,
and extract the predictive association between the feature profile
and the multi-label tag of the same data instance. Substantial ex-
periments on public benchmark datasets and real security event
data validate that our proposed method can provide distinctively
more accurate transductive and inductive classification than other
state-of-the-art algorithms.
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1 INTRODUCTION
In real-world practices of multi-label learning where data are col-
lected from cybersecurity systems and distributed sensor network,
highly incomplete training information is a challenging, while fre-
quently witnessed issue, due to on-device privacy control, limited
coverage of deployed sensors and unexpected sensor failures. Fur-
thermore, annotating the collected data become extremely difficult
when high fractions of data missing. Human annotators can only
provide class labels with high confidence to data samples with well
defined feature representation, while leaving the ambiguous data
samples unlabelled. Multi-label learning in such a scenario faces dif-
ficulties of the co-occurrence of weak positive unlabelled class
tag assignment and missing feature values.

We target on solving this multi-label learning problem with
highly incomplete data. Deriving stable and accurate estimation
of multi-label class membership under the weakly supervised sce-
nario remains a more difficult task yet to be resolved, compared
to the problem in a traditional semi-supervised learning setting,
where both positive and negative labels are visible. A concrete ex-
ample of co-occurrence of incomplete feature profiles and weak
label assignments is the malicious event categorisation in IoT se-
curity, e.g., detecting malicious events on distributed IoT devices.
Security telemetry data collected from security products protecting
IoT devices, e.g., IDS-enabled routers or network firewalls/proxy
servers, can be highly incomplete. Customers can also manually
change their privacy configurations on their devices to limit cover-
age of telemetry data shared with security vendors. Simultaneously,
human analysts can only identify malicious events featuring with
relatively complete and typical profiles since mislabeling malicious
events as benign ones can potentially increase false negative rate
and make learnt event detectors fail to capture potential malicious
activities. In this cost-sensitive scenario, it is sensible for human an-
alysts to leave the security events with incomplete and ambiguous
profiles unlabeled. An efficient solution to multi-label learning with
the co-occurrence of missing feature values and weak label as-
signments is therefore essential to the success of data analytics
tasks in real-world applications like IoT security.

Existing methods either address the problem of weak label as-
signment [2, 32] or focus on the noisy feature values [3, 6, 11], while
not solving the learning problem with co-occurrence of partially
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observed feature and weak label information. In [2, 32], multi-label
learning with weak label information is studied with the assump-
tion that the feature description of data instances is fully observed
and free from corruption. Multi-label learning with missing infor-
mation in feature and label is studied in [11] and [3]. However,
the solutions are not designed to handle the positive-unlabeled
characteristic of the weak label assignments. They require both
positive and negative label elements observed in the given label
annotations for training. In [6], Chiang et al. introduces a dirty
data model to improve the robustness of multi-label learning when
having complete but noise-corrupted features. Note that this noise
model is designed to characterize noise distribution. When facing
a large fraction of missing features, we can barely have any prior
assumption on the missing values and their statistical properties.
This makes it difficult to apply the noise-tolerant learning methods
[6] directly as a solution in our work.

In this paper, we propose Collaborative Embedding (ColEmbed)
to attack the issue of the co-occurrence of highly incomplete feature
profiles and weak labels in multi-label learning. Firstly we learn
collaboratively low-rank approximation to incomplete features and
weak labels to derive the shared embedding based representation
of features and labels. Given the positive-unlabeled intrinsic of
the weak label matrix, we adopt a cost-sensitive matrix factoriza-
tion to tune the label embeddings to better recover class distribu-
tion. By constraining the consistency between feature and label
embedding space, the discriminative information extracted from
incomplete feature profiles helps to recover label assignments. No-
tably, benefited from the flexible algorithmic design, the proposed
ColEmbed method can perform both transductive and inductive
multi-label learning, with wide applicability. The evaluation results
on both public benchmark datasets and a real-world IoT security
data show that the proposed method has superior performances in
both transductive and inductive learning scenarios, compared to
the state-of-the-art multi-label learning solutions.

2 RELATEDWORK
The problem of multi-label learning with weak labels was firstly
defined in [32], where the learning process was considered as a
semi-supervised learning problem. The proposed solution, named
WELL, investigated the low-rank structure of the pairwise affinity
matrix of training data instances. Intuitively, if a given pair of data
instances are assigned a high affinity score, it is likely that the
two data instances share the same label assignment. Based on this
assumption, correlation between label dimensions is then recovered
to estimate missing label assignments. When a high fraction of
feature profiles are missing, the pairwise affinity relation and label
correlation cannot be estimated stably, and thus cause distinctive
deterioration of multi-label learning performances.

The problem of learning with weak labels was casted as Positive-
Unlabeled (PU) learning in [4, 9, 10, 15, 23]. In PU learning, only a
small fraction of data instances from positive class are well labeled,
while labels of the rest data are not available. This weakly super-
vised learning scenario is similar with the setting of the weak label
problem. By treating each label dimension independently, multi-
label learning with weak labels can be decomposed into a series
of parallel PU learning tasks. However, ignoring the correlation

information in the primitive solution does harm to classification
performances, as stated in [27, 32]. To model the correlation among
labels, the whole PU labeled matrix was taken as input in [13],
and processed by a low-rank cost-sensitive matrix factorization
to achieve completion of the given PU matrix. The proposed PU
matrix completion has an inductive extension to employ features of
instance as inductive side information. Nevertheless, it assumes the
feature observations are complete and free from corruption, which
limits its capability on solving our studied problem.

Another highly relevant topic is semi-supervised multi-label
classification with incomplete labels. In this problem, both posi-
tive and negative label entries are provided. Early stage research
of this topic conducted label imputation as a preprocessing step
[16, 17, 28, 32, 34]. They don’t explicitly employ predictive relation
between feature and labels, which limits their effectiveness. Re-
cent works overcame this shortage by jointly exploiting low rank
structures of label assignments and predicative relation between
features and labels, as reported in [3, 6, 11, 12, 29–31, 33]. Enforc-
ing the low rank constraint on label assignments is testified to be
efficient to capture latent correlation between labels. Furthermore,
features were employed as predicative side information to recon-
struct missing labels recovery [11, 29, 30, 33]. The semi-supervised
setting includes the weak label based learning as a special case.
However, the positive-unlabeled intrinsic of the weak label issue
introduces more bias into the estimates of classification distribution,
thus increases difficulty of learning.

It is worth noting that [3, 6, 11] accepted imperfect features as
input. [11] and [3] assumed the entries of both feature and label ma-
trix were randomly selected as missing observations. They jointly
reconstructed features and labels by performing low-rank matrix
completion on the augmented matrix concatenated by both features
and labels. Nevertheless, both positive and negative class labels are
required in both algorithms to identify the potential class sepa-
rating structure. With only positive labels observed in the weak
label problem, the two approaches can be severely biased from
the true class assignments. Furthermore, they don’t enforce the
predictive correlation and information consistency between fea-
tures and labels. [6] assumed the features were fully observed but
noise-corrupted. When the fraction of missing features is high (e.g.,
over 50%), the low signal-noise ratio can weaken robustness of the
method and deteriorate its label reconstruction performance.

Motivated by the previous efforts, we propose to conduct collab-
orative learning of low-rank approximation to incomplete features
and weak labels. The key idea is to approximate the underlying
predicative relation between feature space and label embedding
space, in order to conduct both transductive and inductive multi-
label classification with highly incomplete training information.
This approach is inspired by the natural learning loop of human
beings - transductive and inductive learning process are usually
coupled and conducted in parallel. The former unveils the asso-
ciations between feature profiles and multi-label tags, while the
latter deduces a reusable classification model to categorize new data
instances. The success of the state-of-the-art approaches [6, 13, 31]
confirms the merit of introducing the flexibility of combing trans-
ductive and inductive learning together. Nevertheless, they become
fragile with the co-occurrence of missing features and weak labels.
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3 THE PROPOSED COLLABORATIVE
EMBEDDING METHOD

In this section, we first define the studied problem and then intro-
duce a provably way for label matrix reconstruction in Section 3.2.
After that, we propose a general model for collaborative learning
with incomplete data in Section 3.3 and its linear and non-linear
implementation in Section 3.4.

3.1 Notations and Problem Definition
Given N instances as training data, we use X ∈ RN ∗D to denote
D-dimensional feature vectors of all N instances. X is partially
observed, with a binary-valued matrix Ω indicating locations of
miss-observations in X . Ωi, j = 1 if Xi, j is observed, otherwise
Ωi, j = 0. Y ∈ {0, 1}N ∗M denotes the label assignments of the
training instances. M is the label dimension. In the setting of the
weak label problem, Y is intrinsically a positive-unlabeled matrix,
Yi, j = 1 if Yi, j is observed. More precisely, Yi, j = 1 indicates that
the corresponding instance Xi, : is positively labeled in the j-th
label dimension. Yi, j = 0 if Yi, j is not observed, thus categorized as
unlabeled elements in Y .

In this work, the proposed algorithm is required to first conduct
transductive multi-label learning, which aims at accurately re-
covering themissing label elements ofY based on highly incomplete
X . In a further step, the algorithm is also designed to perform in-
ductive learning. Based on incomplete feature profileX and weak
labels Y , the proposed algorithm builds a reusable classifier f that
can be applied on new testing instances of fully observed profiles
for classification use. In the following sections, without extra high-
light, ∥·∥ denotes Frobenius norm of a matrix. ◦ is used to denote
the Hadamard product operator, such as [X ◦ Y ]i, j = Xi, jYi, j . ∥·∥∗
denotes the nuclear norm of X .

3.2 Provably Reconstruction of Label Matrix
We cast the problem of learning with incomplete features X and
weak labels Y as a positive-unlabeled (PU) learning process. The
basic idea originates from cost-sensitive matrix factorization pro-
posed in [13]. Assuming that the underlying complete true features
of instances are given as Xдt , we propose to recover the underly-
ing true label assignments based on logistic matrix factorization,
which encodes label correlation. The objective function of label
reconstruction is given in Eq. (1):

S∗ = arдmin
S

∑
i, j

Γi, j log(1 + e(1−2Yi, j )X
дt
i, : (Sj .:)

T
) + λS ∥S ∥∗ (1)

where Γi, j is an element-wise calibrating parameter reweighing the
mis-classification cost over positive entries and unlabeled entries
in Y . It outputs α ∈ [0, 1] when Yi, j = 1. For unlabeled Yi, j , it is
valued as 1 − α . The reweighing scheme originates from the idea
of cost-sensitive calibration for learning with noisy labels [19, 21],
which is widely accepted in PU learning. λS enforces the low rank
constraint on S , which in turn strengthens the low-rank structure
of the reconstruction to Y . Since the correlation exits between
label dimensions in most real-world multi-label tags, requiring the
recovered Y to be low rank is helpful for better estimating the
missing label assignments.

The probabilistic class membership of each element Yi, j is esti-
mated by Ŷ = 1/(1 + exp(−Xдt

i, : (Sj, :)
T )). Binary labels are inferred

by thresholding Ŷ as Y i, j = I (Ŷi, j > q). I () is the indicator func-
tion and q ∈ R is the threshold. Without loss of generality, we set
q = 0.5 in the following theoretical study. Otherwise we can shift
and scale the matrix instead. According to co-embedding theory
[12, 18], S ∈ RM∗D defines a linear transformation mapping a data
instance from the original feature space to the label space. The dot
product between X

дt
i, : and Sj, : measures the association strength

between each instance and label [12, 18].
Let Yдt be the underlying true labels. We can provide an analyt-

ical upper bound of the empirical reconstruction error between Y
and Yдt as follows. Assuming Xдt provides perfect side informa-
tion, a.k.a.Col(Yдt )⊆ColXдt , the upper bound of the reconstruction
error can be derived following the proof of Theorem 3 in [13]:

Theorem 1. Assume Col(Yдt )⊆Col(Xдt ), where Col() denotes
the column space. α is valued as 1+ρ

2 and ρ is the flipping rate of
masking positively labeled entries of Y as unlabeled. Ŷ ∗ is derived
with S∗, the minimiser of Eq. (1). Let Y ∗

i, j be the thresholded 0-1
matrix of Ŷ ∗. The label reconstruction error is defined as R(Y ∗

) =
1

NM
∑
i, j ∥Y

∗

i, j −Yдt ∥2. Then with a constantC , we can derive the
following upper bound of the reconstruction error R holding with
probability at least 1 − δ :

R(Y
∗
) ≤

12
1 − ρ

(
Ct

√
log 2D

√
NM

ϰ + 2
√
log(2δ )
√
2NM

) (2)

where t is the upper bound of the spectral norm of H , and ϰ =

max
i

∥X
дt
i, : ∥ is the maximum L2-norm of the row vector in Xдt .

Note that ϰ is a bounded constant since Xдt in practice is always
bounded. As we can find, with good side information Xдt , the av-
erage reconstruction error of binary label reconstruction is of the
order of O(1/(N (1 − ρ)). However in our case, we are not given
with Xдt , but the incomplete feature matrix X , where only a small
fraction of the truth feature values are observed. The incomplete-
ness ofX violates the assumption on the quality of side information
inTheorem1. Therefore we next propose a newmodel for learning
with the incomplete X .

3.3 Collaborative Learning with Incomplete
Training Data

Despite incomplete, the association existing between instances and
feature dimensions can be helpful for estimating affinity relation
of data instances, which is closely relevant with the distribution
of label assignments in the label embedding space. Following this
principle, we propose to jointly recover the missing observations of
feature profiles and labels, in order to conquer the challenging issue
introduced by the incomplete training data. In Eq. (3), we define
the learning objective of the proposed Collaborative Embedding
method (ColEmbed):

X̂ ∗, f ∗,E∗ = arдmin
X̂ ,f ,E

∥Ω ◦ (X − X̂ )∥2 + λ L(X̂ ,Y , f ,E)

+ λE ∥E∥∗ + λX ∥X̂ ∥∗ + λf Lr eд(f )

(3)

with L(X̂ ,Y , f ,E) =
∑
i, j

Γi, j log(1 + e(1−2Yi, j )(f (X̂i, j )+Ei, j ))
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The merits of the above objective function that jointly learns a
low-rank approximation X̂ to X and a linear predictor f (X̂ ) + E to
recover weak labels are three-folds. Firstly, the low-rank struc-
ture of X̂ encodes affinity relation between data instances. Label
assignments can make use of the affinity relation to better estimate
missing label tags belonging to associated instances or label dimen-
sions. Secondly, the recovered label assignments can be considered
as an additional regularization for recovering missing feature pro-
files, as similar feature profiles usually indicate similar label tagging
and vice versa. Consequently, the learning processes of recovering
features and labels are designed to oscillate iteratively between two
ends to share complementary information between each other, until
the learning processes converges to a balancing point. Parameter λ
weights the relative importances of reconstructing the feature ma-
trix X and recovering the incomplete label matrix Y . Parameter λX
is the penalty parameter enforcing the low-rank constraint on the
approximation of X̂ . Finally, we use f (X̂ ) as a generalised feature
extraction procedure, generating new feature representation from
the approximation X̂ . Learning the structure of f is coupled with
learning of missing features and labels, which makes f better fit
to the underlying predictive relation between features and labels
given highly incomplete data. Lr eд(f ) denotes the regularisation
on f to prevent the risk of overfitting. E is introduced as the resid-
ual error outside the feature space defined by f (X̂ ). It is used to
capture the information in the label reconstruction process that
f (X̂ ) fails to describe. E is also assumed to be low-rank (penalized
with λE ), in order to preserve the overall low-rank structure of the
recovered label matrix. According to the dirty data model proposed
in [6], introducing E as a bias term in the inductive learning model
improves its robustness against the artifacts in the low-rank ap-
proximation X̂ . In our work, E is used to suppress the impact of the
label reconstruction error propagated during iteratively updating
the estimation of missing features and labels.

For transductive learning, the optimally tuned f , as well as E,
represent the side information to recover the missing label and fea-
ture elements in the given incomplete data. For inductive learn-
ing, f is used as a learnt classification model. Performing f on
newly observed testing instances with completed feature profiles
predicts directly labels of the testing instances. In the followings,
we study the impact of different formulations of f by investigating
how linear and non-linear f perform in the learning task.

3.4 Linear and Non-linear Collaborative
Embedding

Firstly, we define f (X̂ ) = X̂ST as a linear projection of X̂ , where
S ∈ RM∗D . The regularization term Lr eд(f ) is reduced to ∥S ∥∗,
in order to preserve the low-rank structure of the predicted la-
bel assignments. As a result, the loss function of the linearized
ColEmbed method (named ColEmbed-L) is given as:

X̂ ∗, S∗,E∗ = arдmin
X̂ ,S,E

∥Ω ◦ (X − X̂ )∥2 + λL(X̂ ,Y , S,E)

+ λE ∥E∥∗ + λX ∥X̂ ∥∗ + λS ∥S ∥∗

(4)

with L(X̂ ,Y , S,E) =
∑
i, j

Γi, j log(1 + e(1−2Yi, j )(X̂i, :(Sj, :)T +Ei, j ))

By fixing X̂ and discarding the terms irrelevant with S or E, minimiz-
ing Eq. (4) with respect to S and E equals to minimize L(X̂ ,Y , S,E)
with X̂ as the noisy side information. The process of learning S and
E can be considered as inductive multi-label learning with weak
labels. Following the proof of Lemma 2 and Theorem 1 in [6], it
is straightforward to show that the expected loss L(X̂ ,Y , S,E) is
upper-bounded by the quality of X̂ following the proof in [6]:
Theorem 2 Let N be the trace norm of E, C and C

′

be universal
constants, δ be a constant in [0, 1]. |Y | be the cardinality of the set
of observed label elements in Y . With probability at least 1 − δ , the
upper bound of the expected loss L(X̂ ,Y , S,E) holds:

L(S,E) ≤ min{4N

√
log 2N
|Y |

,

√
36CB

N
√
N

|Y |
}

+
4d̂

C
′
µ2γ 2

√
log 2D
|Y |

+ B

√
loд 1

δ
2|Y |

(5)

In Eq. (5), we inherit the definition of µ-informative part of X̂ in
[6] to measure the quality of the side information X̂ . It is defined
as X̂µ =

∑
i=1 σ1Iµ (σi/σ1)uiv

T
i , where Iµ (x) is the thresholding

operator whose output is x when x > µ and 0 otherwise. X̂ =∑D
i=1 σiuiv

T
i is the reduced SVD of X̂ . d̂ denotes the rank of the

µ-informative part of X̂ . γ is defined asmini ∥Xi, :∥/maxi ∥Xi, :∥. B
is the maximum magnitude of the weighted cross-entropy function
L with respect to S .

The analytical bound in Eq. (5) illustrates that the side informa-
tion extracted from the original feature space plays an important
role on reducing label inference error. Following this idea, we pro-
pose to define anon-linear feature extraction process f to improve
the descriptive power of side information. An intuitive choice is
to apply kernel tricks to build f . However, there are two major
barriers of employing kernel machines. Firstly non analytical form
of exact kernel mapping can be given to describe new feature rep-
resentation in the high dimensional kernel space. Thus it is difficult
to conduct optimization within the kernel space. Secondly, learning
with exact kernel machines is computationally intense.

To address these issues, we use random feature expansion (RFE)
based approximation to generate non-linear representation of data
instances. RFE method [22] has been used widely to approximate
shift-invariant kernel by spanning a randomized feature space based
on Fourier transform of the corresponding kernel function. Inner
products of two data instances Xi and X j in the new random space
approximates the kernel function K(Xi ,X j ). Computationally effi-
cient as it is, RFE can be also considered as non-linear features ex-
tracted from the original feature space, and has been used for better
inductive matrix completion, as reported in [24]. For constructing
non-linearized ColEmbed (named ColEmbed-NL), we define f
as a linear combination of the random features extracted from X̂ ,

f (X̂ ) = φ(X̂ )ST where

φ(X̂i, :) =
1
K
[cos(uT1 X̂i, :), cos(u

T
2 X̂i, :), · · ·, cos(u

T
K X̂i, :),

sin(uT1 X̂i, :), sin(u
T
2 X̂i, :), · · ·, sin(u

T
K X̂i, :)]

(6)

In Eq. (6), u1,u2, ...uK are the K projection directions sampled ac-
cording to the distribution defined from the Fourier transform of
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RBF kernel k(xi ,x j ) = e−γ ∥xi−x j ∥2 . The distribution is a Gaussian
distribution given as p(u) = N (0, 2γ I ), with γ as the kernel width
of RBF kernel. With S ∈ RM∗K in Eq. (6) as a linear projection ma-
trix, f in ColEmbed-NL is defined as a linear combination of the
projected non-linear random features of X̂i, :. Despite the simplicity,
linear combination of the random features generated from RFE can
approximate supervised Kernel machines on large-scale data, and
provide competitive accuracy with the standard Kernel SVM and
achieve much faster training [22]. It also produces very compact
functions because only S and a set of O(K) random features need
to be retained in the optimization.

Combining Eq. (3) and Eq. (6), the objective function of ColEmbed-
NL is thus given in Eq. (7):

X̂ ∗, S∗,E∗ = arдmin
X̂ ,S,E

∥ΩX ◦ (X − X̂ )∥2 + λL(X̂ ,Y , S,E)

+ λE ∥E∥∗ + λX ∥X̂ ∥∗ + λS ∥S ∥∗

(7)

with L(X̂ ,Y , S,E) =
∑
i, j

Γi, j log(1 + e(1−2Yi, j )(φ(X̂i, :(Sj, :)T +Ei, j ))

4 SGD BASED ALTERNATING UPDATE FOR
PARAMETER ESTIMATION

Although the loss function defined in Eq. (3) (for bothColEmbed-L
and ColEmbed-NL) is not jointly convex, the convexity holds by
optimising with respect to X̂ by fixing S and E, or the other way
round. Therefore, we propose an efficient alternating update based
algorithm to solve Eq. (3) by decomposing it into two sub-problems,
as summarised in Algorithm 1. To scale the algorithm on large
datasets, we use stochastic gradient descent (SGD) to conduct the
alternating optimisation with respect to each variable.

It is known thatmin
X

f (X ) + λ |X |∗ is equivalent tomin
U ,V

f (UVT ) +

λ(∥U ∥2+ ∥V ∥2)when k forU ∈ RN ∗k andV ∈ RM∗k is sufficiently
large. We thus replace X̂ as UVT , S as PQT and E as MNT in the
optimization process, with kX , kS and kE columns in U and V , P
and Q andM and N , respectively. Consequently, the optimization
problem becomes:

U ∗, V ∗ = arдmin
U ,V

∥ΩX ◦ (X −UVT ) ∥2

+ λL(U , V , Y , P t−1(Q t−1)T , Gt−1(H t−1)T ) +
λX
2

( ∥U ∥2 + ∥V ∥2)

P ∗, Q∗, G∗, H ∗ = arдmin
P,Q,G,H

L(U t−1, V t−1, Y , P, Q, G, H )

+
λS
2
( ∥P ∥2 + ∥Q ∥2) +

λE
2
( ∥G ∥2 + ∥H ∥2)

(8)

Based on Eq. (8), we demonstrate the optimisation of the loss func-
tion of ColEmbed-L with respect to U , P and G in Eq. (9). We
slightly abuse the definition of sign function, sдn(a) = 1 if a is
positive and -1 otherwise. Specially, we conduct SGD with respect
to each row vector ofU , P and G independently of the other rows.

Algorithm 1: Alternating Update Using SGD
Input: Incomplete feature matrix X, weak label matrix Y
Output: U ,V ,P ,Q ,G ,H
Initialize U ,V ,G ,H ,P ,Q as random valued matrices
for t = 1 to T do

U t , V t = ADAM(P t−1, Q t−1, Gt−1, H t−1)
P t , Q t , Gt , H t = ADAM(U t ,V t )

end

As a result, each row vector is updated as follows:

U t+1
i, : = U

t
i, : − η(

∑
j∈ΩXi, :

Ti, jVj, : + λXU t
i, :

− λ
∑
j
Γi, j sдn(Yi, j )

e−sдn(Yi, j )(U
t
i, :V

T (Sj, :)T +Ei, j )

1 + e−sдn(Yi, j )(U
t
i, :V

T (Sj, :)T )+Ei, j )
Sj, :V )

P t+1i, : = P
t
i, : − η(λH P ti, :

− λ
∑
j
Γj,i sдn(Yj,i )

e−sдn(Yj,i )(X̂ j, :Q (P t i, :)T +Ej,i )

1 + e−sдn(Yj,i )(X̂ j, :Q (P t i, :)T +Ej,i )
X̂ j, :Q )

Gt+1
i, : = G

t
i, : − η(λEGt

i, :

− λ
∑
j
Γi, j sдn(Yi, j )

e−sдn(Yi, j )(X̂i, :(Sj, :)
T +Gt

i, :(Hj, :)T )

1 + e−sдn(Yi, j )(X̂i, :(Sj, :)
T +Gt

i, :(Hj, :)T )
Hj, :)

(9)

where η is the learning rate of SGD, and Ti, j = UiVT
j − Xi, j . Since

vanilla SGD is sensitive to the learning rate, we choose ADAM as
an SGD variant with a self-adaptive learning rate [14].

We assume p iterations on average for each ADAM based opti-
misation operation. The computational complexity per iteration
in Algorithm 1 counts to O(p(N +M)DkX + p |ΩX |kX + pN (D +
M)kH + p(M + N )(D + kE )), where |ΩX | denotes the number of
the observed feature entries of X . Though the problem is globally
non-convex, the monotonic decreasing of the loss function guaran-
tees convergence to a local minimum. Our empirical study in next
section shows that the classification accuracy produced from the
local minimums is satisfying and stable.

We adopt the same alternating update based optimization for
learning with ColEmbed-NL. The non-linearity of the trigonomet-
ric transformation breaks the coordinate-wise convexity of the loss
function. The convergence analysis for ColEmbed-L doesn’t not
apply for ColEmbed-NL. Nevertheless, ADAM empirically con-
verges fast to local minimum during training ColEmbed-NL. The
gradients with respect toU and V differs in ColEmbed-NL due to
the non-linear transformation, which can be defined by chain rule:

▽U L(U , V ) = L′(φ(X̂ ))
∂φ(X̂ )

∂X̂

∂X̂
∂U

▽V L(U , V ) = L′(φ(X̂ ))
∂φ(X̂ )

∂X̂

∂X̂
∂V

(10)

5 EMPIRICAL STUDY
5.1 Experimental settings
In this study, we investigate the performances of the proposed
ColEmbedmethod for both transductive and inductive multi-label
classification. Six state-of-the-art methodsWELL [32], LEML [31],
DirtyIMC [6], MC-1 [11], CoEmbed[12] and BiasMC [13] are
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Table 1: Dataset summary. density is the fraction of the pos-
itively labeled elements in the label matrix.

Data set # samples # feat. # labels density
Yeast 2417 103 14 30.3%
Scene 2407 294 6 17.9%

Mediamill 43907 20 101 10%
NUS-Wide Subset 50000 25 81 10%

EventCat 1150 72 6 10%

used as benchmarking baselines. WELL, LEML, CoEmbed and
BiasMC target at attacking directly the issue ofweak labels inmulti-
label learning. In contrast, the rest two methods are designed to
handle semi-supervised labels, assuming both positive and negative
labels are observed in the given labels. In Section 5.2 and Section.5.3,
we evaluate the transductive and inductive learning performances
of the involved algorithms respectively.

Four public datasets, Yeast[8], Scene[1], Mediamill[25] and
NUS-Wide[7] are used for evaluation. In addition, we construct a
multi-label security event categorisation dataset, collected from a
real-world IoT device security application. Defence-in-depth strat-
egy advocates customers to deploy as many as possible security
products to provide the most robust defence against various threats.
Security telemetry data reported by different security products
can provide complementary information about security events en-
countered on customers’ devices. By studying the highly correlated
security data from different products, security vendors can thus pro-
vide better coverage on potentially malicious events. In our security
event dataset, we collect security telemetry data from 1,150 network
appliances, each reporting a 72 dimensional feature vector. Each
dimension indicates occurring frequency of a specific type of alert.
Six labels are assigned to each device in the dataset, corresponding
to a variety of categories of security threats. Same telemetry fea-
tures can be relevant with multiple threats. For example, scanning
activity and data breaching can occur simultaneously. Event cate-
gorisation on IoT devices can be used to detect suspicious attack
behaviors that can potentially compromise the IoT devices to steal
private data or launch DDoS attacks. Using this dataset, we evaluate
to what extent the proposed method can improve the quality of
security services. Table 1 summarises information of all the five
datasets (the cyber security dataset is named EventCat). density
denotes the fraction of the positive labels in the label matrix.

The full NUS-Wide dataset contains around 0.2 millions of images,
and is too large for WELL and DirtyIMC, which involve expen-
sive full SVD on the input feature matrix. We randomly sample
50,000 images to construct a subset for benchmarking algorithms
within acceptable cost. Both Mediamill and NUS-Wide datasets are
labeled with high imbalance. Only 4.3% and 2.3% of elements in
their label matrices are positive. In the following test, we mask out
increasingly larger fraction of positively labeled elements from the
label matrix of each benchmark dataset, so as to measure accuracy
of reconstructing weak label assignments. Given such highly imbal-
anced label assignment as in Mediamill and NUS-Wide, masking
over 50% of positive labels can lead to insufficient positive label
elements for training, thus decreases statistical stability of any clas-
sificationmodel involved in the study. To guarantee enough positive

labels, we rank the label dimensions of each dataset according to
the fraction of positively labeled elements. Label dimensions with
the largest fractions of positive elements are selected. The rest of
them are not used in the experiments. As a result, 20 out of 101
labels for Mediamill, 25 out of 81 label dimensions for NUS-Wide
are chosen respectively to improve the coverage of positive label
elements to cover 10% of the label matrix.

To evaluate the performances of transductive learning, we use all
data instances of each data set. 60% of the entries from the feature
matrix are randomly masked to construct incomplete features. In
the label matrix, we randomly sample 30%, 50% and 80% of positive
labels. These selected positive labels and all negative labels are
masked as unlabeled ones, in order to construct weak labels with
increasingly larger label flipping ratio τ . For the test of inductive
learning, 80% of the data instances in each data set are randomly
selected as training set. We follow the same sampling schemes on
the feature and label matrix of the training set. The left 20% of the
data instances are equipped with completed features and ground
truth labels. They are used only for performance evaluation. In
either mode of test, we repeat the random sampling process with
replacement for 10 times. Mean and standard deviation of the de-
rived Macro-averaging AUC [26] scores are taken as the overall
evaluation metric for the algorithms. For transductive learning,
we measure the classification accuracy on the reconstructed la-
bel matrix. For inductive learning, the inductive model is firstly
tuned on the incomplete training set. The Macro-averaging AUC
scores derived on the testing instances are used to measure the
accuracy of inductive learning. To tune penalty parameters with
grid search on each data set, we generate incomplete features and
weak labels following the random masking scheme, which is con-
structed independently from those used for evaluating the accuracy
of transductive learning. It is worthy to note that out-of-sample
extension used in cross-validation is not inherently allowed in
transductive learning in Section 5.2. Instead, we employ Gabriel
hold-out patterns, a.k.a. Bi-Cross-Validation [20] to guarantee no
overlapping between the data samples used for parameter tuning
and performance evaluation.

For the proposed approach, kX , kH and kE are set to 10 for all
databases. Penalty parameters are searched over the range [1e −
2, 5e − 2, 1e − 1, 5e − 1, 1, 5, 1e + 1, 5e + 1, 1e + 2]. α of the proposed
approach is set to 0.2, corresponding to the case where the label
flipping ratio ρ equaling to 0.6. The ground truth of ρ is never un-
veiled during practical usage. Therefore, we choose ρ to be slightly
larger than 0.5, mimicking the applications where most of posi-
tive labels are missing. To integrate random feature expansion into
ColEmbed-NL, we set the variance of RBF kernel as 0.1 and the
number of sampling rounds as 700 in all the experiments.

5.2 Empirical study of transductive learning
Besides the six baseline methods, we include inductive extension
of BiasMC, noted as BiasMC-I and two variants of LEML in the
transductive test. The first one uses the cost-sensitive binomial loss
in Eq. (1) and the second one adopts the least squared loss [31]. The
two variants are denoted as LEML-B and LEML-S respectively. To
conduct a fair comparison, we use the low-rank matrix completion
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Table 2: Mean (standard deviation) of transductive Macro-AUC of all involved algorithms on Yeast and Scene datasets

Yeast Scene

Algorithm τ = 0.300 τ = 0.500 τ = 0.800 Algorithm τ = 0.300 τ = 0.500 τ = 0.800
ColEmbed-NL 0.915(6.11e-3) 0.856(1.05e-3) 0.812(1.31e-3) ColEmbed-NL 0.931(1.04e-3) 0.927(3.87e-3) 0.918(3.60e-3)
ColEmbed-L 0.901(6.23e-3) 0.837(5.05e-3) 0.761(2.33e-3) ColEmbed-L 0.905(5.21e-3) 0.889(8.01e-3) 0.873(3.40e-3)

MC-1 0.776(2.32e-2) 0.775(2.54e-2) 0.754(6.61e-3) MC-1 0.537(1.39e-2) 0.534(8.11e-3) 0.529(8.44e-3)
DirtyIMC 0.788(8.05e-3) 0.784(8.12e-3) 0.764(8.00e-3) DirtyIMC 0.881(8.31e-3) 0.854(6.34e-3) 0.782(5.15e-3)
CoEmbed 0.770(2.98e-3) 0.757(1.03e-2) 0.730(1.21e-2) CoEmbed 0.798(5.10e-2) 0.767(7.09e-2) 0.728(2.25e-2)
BiasMC 0.833(1.33e-2) 0.729(1.59e-2) 0.700(6.89e-3) BiasMC 0.645(5.00e-2) 0.604(2.33e-2) 0.516(2.27e-2)
BiasMC-I 0.793(1.33e-2) 0.709(1.59e-2) 0.660(6.89e-3) BiasMC-I 0.675(5.00e-2) 0.624(2.33e-2) 0.576(2.27e-2)
LEML-B 0.654(4.46-3) 0.646(4.11e-3) 0.631(4.96e-3) LEML-B 0.514(4.11e-3) 0.517(1.89e-3) 0.533(2.27e-2)
LEML-S 0.436(9.10e-3) 0.428(9.89e-3) 0.421(5.36e-3) LEML-S 0.511(4.89e-2) 0.522(2.83e-2) 0.519(3.48e-2)
WELL 0.671(8.87e-3) 0.650(1.01e-2) 0.633(1.00e-2) WELL 0.618(5.09e-2) 0.574(2.35e-2) 0.482(1.15e-2)

Table 3: Mean (standard deviation) of transductive Macro-AUC of all involved algorithms on Mediamill and NUS-Wide Subset
datasets

Mediamill NUS-Wide Subset

Algorithm τ = 0.300 τ = 0.500 τ = 0.800 Algorithm τ = 0.300 τ = 0.500 τ = 0.800
ColEmbed-NL 0.900(7.11e-4) 0.893(8.12e-4) 0.881(1.05e-3) ColEmbed-NL 0.740(7.25e-3) 0.720(6.71e-3) 0.703(9.62e-3)
ColEmbed-L 0.905(2.10e-3) 0.891(5.43e-3) 0.865(9.12e-3) ColEmbed-L 0.714(1.37e-2) 0.671(1.03e-2) 0.643(1.70e-2)

MC-1 0.562(6.23e-3) 0.538(5.00e-3) 0.545(8.12e-3) MC-1 0.617(2.33e-2) 0.559(1.95e-2) 0.531(1.86e-2)
DirtyIMC 0.850(7.33e-3) 0.824(5.61e-3) 0.731(1.00e-2) DirtyIMC 0.709(3.99e-2) 0.655(1.95e-2) 0.630(1.00e-2)
CoEmbed 0.761(7.10e-2) 0.741(5.97e-2) 0.681(5.53e-2) CoEmbed 0.695(5.31e-2) 0.611(3.05e-2) 0.583(3.28e-2)
BiasMC 0.890(8.10e-3) 0.857(8.15e-3) 0.744(1.19e-2) BiasMC 0.577(5.06e-2) 0.577(8.21e-2) 0.552(5.97e-2)
BiasMC-I 0.887(9.08e-3) 0.835(8.85e-3) 0.734(1.72e-2) BiasMC-I 0.613(4.20e-2) 0.605(2.85e-2) 0.593(3.77e-2)
LEML-B 0.782(7.65e-3) 0.783(5.59e-3) 0.789(4.04e-3) LEML-B 0.639(3.55e-3) 0.640(6.37e-3) 0.635(6.66e-3)
LEML-S 0.550(3.63e-3) 0.545(5.54e-3) 0.536(7.93e-3) LEML-S 0.638(3.28e-2) 0.636(3.94e-3) 0.632(4.13e-3)
WELL 0.618(3.20e-2) 0.593(2.58e-2) 0.430(1.73e-2) WELL 0.523(5.00e-2) 0.468(3.00e-2) 0.392(3.10e-2)

Table 4: Mean (standard deviation) of transductive Macro-
AUC of all involved algorithms on EventCat

Algorithm τ = 0.300 τ = 0.500 τ = 0.800
ColEmbed-NL 0.827(7.11e-3) 0.781(6.55e-3) 0.743(1.00e-2)
ColEmbed-L 0.793(6.00e-3) 0.722(1.05e-2) 0.725(2.31e-2)

MC-1 0.625(2.77e-3) 0.580(1.00e-2) 0.564(1.00e-2)
DirtyIMC 0.797(1.07e-2) 0.725(7.31e-3) 0.716(1.00e-2)
CoEmbed 0.766(6.96e-2) 0.671(7.00e-2) 0.698(3.34e-2)
BiasMC 0.685(1.97e-2) 0.623(1.93e-2) 0.532(2.00e-2)
BiasMC-I 0.675(1.77e-2) 0.625(2.00e-2) 0.512(2.30e-2)
LEML-B 0.683(5.45e-2) 0.676(6.47e-2) 0.617(2.76e-2)
LEML-S 0.615(4.12e-2) 0.615(3.76e-2) 0.602(2.44e-2)
WELL 0.487(3.00e-2) 0.437(1.57e-2) 0.363(1.41e-2)

[5], noted asMC-Convex, to recover side information for all the
baseline methods except MC-1 and BiasMC.

Table 2, Table 3 and Table 4 summarise the comparison results
of transductive multi-label learning. The results of the comparative
study confirm the superior performances of both the linear and non-
linear variant of the proposed collaborative embedding method,
compared to the baseline methods involved in the study.DirtyIMC,
CoEmbed and BiasMC perform the best in the baseline methods.
Benefited from dirty data model, e.g. the L1-norm based deviation
measure, DirtyIMC is robust against the artefacts introduced by
completing the missing elements of the feature matrix. Furthermore,

CoEmbed gains the descriptive power by explicitly enforcing a
predicative constraint on the subspace representation of features
and labels in themodel. However, the performances of bothmethods
deteriorate because of the bias of weak class labels in the positive-
unlabeled label assignments. In addition, as shown by the results
of BiasMC-I, simply using the imputed feature matrix as side
information in BiasMC doesn’t necessarily improve the precision
of label recovery, due to the artefacts of the imputed features.

We further measure the reconstruction error of the reconstructed
feature matrix on each of the datasets in the study. In the Table 5, we
compare the reconstruction error of the missing feature elements
using the proposed method, MC-Convex and MC-1 with τ = 0.8.
It is worth to note that better reconstructing features is beyond the
scope of this study. The purpose of involving the comparison of the
reconstruction error is to verify empirically the basic assumption of
the proposed method: incomplete features and labels can provide
complementary information to each other, so as to better recover
the missing elements of the feature matrix. The reconstruction
error is measured as

√∑
i, j<Ω |Xi, j − X̂i, j |2. As seen in the table,

ColEmbed-L and ColEmbed-NL achieve generally higher recon-
struction accuracy than the other two opponents, especially on the
Mediamill dataset. With high fraction of missing information, the
proposed method produces simultaneously good feature and label
reconstruction. The results illustrate the effectiveness of the design
of the proposed algorithm.
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Table 5: Mean (standard deviation) of feature reconstruction error over all the datasets with τ = 0.8

Dataset ColEmbed ColEmbed-NL MC-Convex MC-1
Yeast 32.971(0.153) 33.011(0.122) 33.920(0.127) 38.439(0.440)
Scene 87.282(2.77e-3) 87.135(1.00e-2) 88.430(0.982) 161.500(1.00e-2)

Mediamill 31.625(1.669) 31.115(1.235) 156.767(5.733) 297.382(3.982)
NUS-Wide Subset 138.131(6.962) 142.313(7.002) 139.938(3.114) 140.221(3.342)

Event 1762(6.183) 1850(5.996) 1896.00(8.649) 3584.00(5.966)

Table 6: Mean (standard deviation) of inductive Macro-AUC of all involved algorithms on Yeast and Scene datasets

Yeast Scene

Algorithm τ = 0.300 τ = 0.500 τ = 0.800 Algorithm τ = 0.300 τ = 0.500 τ = 0.800
ColEmbed-NL 0.829(7.01e-3) 0.805(1.00e-2) 0.807(5.31e-2) ColEmbed-NL 0.931(7.04e-3) 0.927(1.18e-2) 0.913(1.60e-2)
ColEmbed-L 0.650(5.11e-3) 0.641(6.63e-3) 0.634(5.51e-3) ColEmbed-L 0.904(7.04e-3) 0.877(1.18e-2) 0.873(1.60e-2)
DirtyIMC 0.643(8.05e-3) 0.635(8.12e-3) 0.636(8.00e-3) DirtyIMC 0.732(8.31e-3) 0.712(6.34e-3) 0.670(5.15e-3)

DirtyIMC-RFE 0.775(8.05e-3) 0.764(8.12e-3) 0.755(8.00e-3) DirtyIMC-RFE 0.588(8.31e-3) 0.582(6.34e-3) 0.600(5.15e-3)
CoEmbed 0.561(2.50e-2) 0.561(1.75-2) 0.5320(1.70e-2) CoEmbed 0.507(1.17e-2) 0.500(7.04e-3) 0.500(1.23e-2)

CoEmbed-RFE 0.557(8.39e-3) 0.542(1.63e-2) 0.514(3.87e-2) CoEmbed-RFE 0.503(1.10e-2) 0.510(1.05e-2) 0.518(1.28e-2)
LEML-B 0.635(1.33e-2) 0.640(1.59e-2) 0.620(6.89e-3) LEML-B 0.523(5.00e-2) 0.521(2.33e-2) 0.526(2.27e-2)
LEML-S 0.638(1.33e-2) 0.631(1.59e-2) 0.631(6.89e-3) LEML-S 0.561(5.00e-2) 0.550(2.33e-2) 0.554(2.27e-2)

LEML-B-RFE 0.776(1.33e-2) 0.775(1.59e-2) 0.776(6.89e-3) LEML-B-RFE 0.487(5.00e-2) 0.477(2.33e-2) 0.480(2.27e-2)
LEML-S-RFE 0.696(1.33e-2) 0.681(1.59e-2) 0.706(6.89e-3) LEML-S-RFE 0.606(5.00e-2) 0.551(2.33e-2) 0.493(2.27e-2)
BiasMC-I 0.661(1.33e-2) 0.638(1.59e-2) 0.634(6.89e-3) BiasMC-I 0.820(5.00e-2) 0.813(2.33e-2) 0.793(2.27e-2)

BiasMC-I-RFE 0.772(1.33e-2) 0.764(1.59e-2) 0.771(6.89e-3) BiasMC-I-RFE 0.545(5.00e-2) 0.535(2.33e-2) 0.535(2.27e-2)

Table 7: Mean (standard deviation) of inductive Macro-AUC of all involved algorithms on Mediamill and NUS-Wide Subset
datasets

Mediamill NUS-Wide Subset

Algorithm τ = 0.300 τ = 0.500 τ = 0.800 Algorithm τ = 0.300 τ = 0.500 τ = 0.800
ColEmbed-NL 0.889(8.24e-3) 0.886(1.67e-3) 0.886(8.18e-3) ColEmbed-NL 0.723(7.25e-3) 0.706(6.71e-3) 0.700(9.62e-3)
ColEmbed-L 0.872(8.28e-3) 0.875(9.50e-3) 0.873(1.25e-2) ColEmbed-L 0.712(1.37e-2) 0.702(1.30e-2) 0.661(1.20e-2)
DirtyIMC 0.785(5.16e-3) 0.780(8.64e-3) 0.782(5.39e-3) DirtyIMC 0.681(4.11e-3) 0.682(9.12e-3) 0.654(5.44e-3)

DirtyIMC-RFE 0.787(6.43e-3) 0.787(9.42e-3) 0.788(6.00e-3) DirtyIMC-RFE 0.539(8.87e-3) 0.541(1.12e-2) 0.532(3.14e-3)
CoEmbed 0.794(1.64e-2) 0.795(9.85-3) 0.668(1.35e-2) CoEmbed 0.526(1.58e-2) 0.511(1.58e-2) 0.513(2.24e-2)

CoEmbed-RFE 0.690(8.66e-3) 0.650(1.15e-2) 0.545(6.70e-2) CoEmbed-RFE 0.560(1.42e-2) 0.535(5.18e-2) 0.530(1.90e-2)
LEML-B 0.793(7.13e-3) 0.789(6.60e-3) 0.780(6.83e-3) LEML-B 0.703(3.55e-3) 0.701(2.96e-3) 0.683(7.27e-3)
LEML-S 0.576(5.49e-3) 0.571(6.91e-2) 0.565(9.35e-3) LEML-S 0.692(5.00e-2) 0.684(2.33e-2) 0.681(2.27e-2)

LEML-B-RFE 0.788(1.35e-2) 0.788(1.59e-2) 0.790(2.32e-2) LEML-B-RFE 0.618(4.56e-3) 0.615(3.67e-3) 0.616(3.52e-3)
LEML-S-RFE 0.570(1.98e-2) 0.582(1.39e-2) 0.544(1.53e-2) LEML-S-RFE 0.564(7.11e-3) 0.562(8.38e-3) 0.564(2.27e-3)
BiasMC-I 0.805(1.46e-2) 0.800(1.19e-2) 0.785(7.11e-3) BiasMC-I 0.696(3.10e-3) 0.693(2.05e-3) 0.683(9.30e-3)

BiasMC-I-RFE 0.818(2.03e-2) 0.798(1.02e-2) 0.792(8.32e-3) BiasMC-I-RFE 0.532(3.73e-2) 0.524(9.97e-3) 0.515(1.05e-2)

5.3 Empirical study of inductive learning
Except BiasMC andMC-1, all the other baseline methods are used
for inductive learning. Similarly, we use MC-Convex to recon-
struct the feature matrix as the recovered side information. Fur-
thermore, we extend the baseline method by applying RFE on the
recovered features. The non-linear transformation of the features
is used as side information in the four benchmarks. By introducing
non-linearity into thesemethods, we aim at investigating the impact
of the non-linear feature extraction in the challenging multi-label
learning task. The non-linear extensions of the benchmark meth-
ods are noted as LEML-B-RFE, LEML-S-RFE, CoEmbed-RFE,
DirtyIMC-RFE and BiasMC-I-RFE.

The detailed comparison is shown in Table 6, Table 7 and Table 8.
The results show that ColEmbed-L and ColEmbed-NL achieve
distinctively better inductive classification on the testing samples
compared with the other inductive learning methods. The best
baseline inductive methods, such as DirtyIMC and BiasMC-I and
LEML, address either incomplete feature or weak labels. Similarly
as in the transductive test, they suffer when both missing feature
observations and weak labels are witnessed. By comparison, our
method combines both the robustness and the capability of han-
dling positive-unlabeled weak labels into the jointly optimisation
framework, thus produce stable and accurate classification.

As we can find, random feature expansion brings more descrip-
tive power to the proposedColEmbedmethod, generating the best
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Table 8: Mean (standard deviation) of inductive Macro-AUC
of all involved algorithms on EventCat

Algorithm τ = 0.300 τ = 0.500 τ = 0.800
ColEmbed-NL 0.841(1.04e-2) 0.762(9.05e-3) 0.705(2.04e-2)
ColEmbed-L 0.725(8.25e-3) 0.682(1.15e-2) 0.664(1.12e-2)
DirtyIMC 0.680(1.07e-2) 0.657(1.31e-2) 0.625(1.00e-2)

DirtyIMC-RFE 0.720(3.63e-2) 0.691(4.37e-2) 0.658(1.10e-2)
CoEmbed 0.631(2.17e-2) 0.622(7.00e-3) 0.557(3.48e-2)

CoEmbed-RFE 0.553(6.87e-2) 0.549(4.61e-2) 0.519(1.24e-2)
LEML-B 0.685(1.28e-2) 0.644(1.61e-2) 0.593(1.86e-2)
LEML-S 0.547(1.15e-2) 0.535(9.23e-3) 0.516(8.66e-2)

LEML-B-RFE 0.537(1.25e-2) 0.521(8.23e-3) 0.525(1.32e-2)
LEML-S-RFE 0.580(8.61e-3) 0.554(7.82e-3) 0.539(7.25e-3)
BiasMC-I 0.665(8.97e-3) 0.623(7.00e-3) 0.612(6.16e-3)

BiasMC-I-RFE 0.691(1.97e-2) 0.677(1.93e-2) 0.618(2.10e-2)

accuracy over all the datasets. In contrast, the non-linear feature
extraction does not necessarily improve the other benchmark meth-
ods. Especially on Scene and Nus-Wide Subset, introducing the
non-linear features per contra decreases inductive classification
performances of DirtyIMC and LEML-S.

The major cause is the co-occurrence of the artifacts in the re-
covered features and the weak labels. Both issues, as a whole, inject
unpredictable fluctuation to the non-linear classification model. In
our method, tuning of the non-linear inductive model is coupled
with learning of the predictive relation between partially observed
features and labels. The jointly learning process suppresses the neg-
ative impact thus produces better approximation to the underlying
class distribution.

5.4 Run Time Test
We measure the run time cost of the proposed ColEmbed-L and
ColEmbed-NL on the data sets of increasingly larger size. They
are implemented using NumPy and Theano packages and run on
a MacBook Pro laptop with Intel Core i7 2.5GHz CPU and 16GB
DDR3 RAM. Table.9 shows the measured run time on the five data
sets used for benchmarking. In addition, to observe the variation
tendency of the computational cost of the proposed method. we
randomly sample the fullNUS-Wide dataset to generate subsets with
increasingly larger size scaled by 5, containing 1000, 5000, 25000
and 125000 data instances. On each subset, both algorithms run for
10 times. The average running time measured in seconds is reported
in Fig.1 with logarithmic scale in both axes. In the running time
test, we follow the setting of transdutive learning where all data
instances are used in model training, with τ fixed to 0.8. According
to Table.9, the run time cost fluctuates over different datasets. It is
mainly due to the varied distributional characteristics of different
datasets, which change difficulty of optimization. From Fig.1, we
can find clearly that the computational cost of the proposed method
scales up at a linear rate.

6 CONCLUSION
We attack the challenging issue of multi-label learning with highly
incomplete data by collaboratively learning missing features and

Table 9: Averaged run time (seconds) on the five datasets

Data set ColEmbed-L ColEmbed-NL
Yeast 3.255 26.225
Scene 6.954 60.133

Mediamill 605.429 4591.193
NUS-Wide Subset 34.984 405.233

EventCat 10.435 66.076

Figure 1: Scalability of ColEmbed-L and ColEmbed-NL mea-
sured in logarithmic scale

labels. Alongside with jointly feature and label recovery, a predic-
tion function is learnt to fit the underlying association between
feature representation and label assignments. Thanks to the flexible
design, the proposed collaborative embedding method can conduct
both transductive and inductive learning simultaneously. Extensive
experimental study illustrate consistently good applicability of the
proposed method for practical multi-label learning tasks. In our
future plan, we plan to integrate more powerful prediction model,
like neural nets, to improve the performances in a further step.
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