Spearphishing Malware: Do we really know the
unknown?

Yanko Baychev! and Leyla Bilge?

L Airbus CyberSecurity, Taufkirchen, Germany, yanko.baychev@airbus.com
2 Symantec Research Labs, Sophia Antipolis, France, leyla_bilge@symantec.com

Abstract. Targeted attacks pose a great threat to governments and
commercial entities. Every year, an increasing number of targeted attacks
are being discovered and exposed by various cyber security organizations.
The key characteristics of these attacks are that they are conducted by
well-funded and skilled actors who persistently target specific entities
employing sophisticated tools and tactics to obtain a long-time presence
in the breached environments. Malware plays a crucial role in a targeted
attack for various tasks. Because of its stealthy nature, malware used in
targeted attacks is expected to act differently compared to the traditional
malware. However, to our knowledge, there is no previous study that
performed an empirical validation to this assumption.

In this paper, we perform a study to understand whether malware used
in targeted attacks is any different than traditional malware. To this end,
we dynamically analysed a set of targeted and traditional malware to ex-
tract more than 700 features to be able to measure their discriminative
power. These features are calculated from the network, host and mem-
ory behavior of malware. The rigorous experimentation we performed
with several machine learning algorithms suggest that targeted malware
indeed behaves differently and even with raw features extracted from
the dynamic analysis reports, fairly good classification accuracy could
be achieved to distinguish them from traditional malware.

Keywords: targeted attacks, malware, dynamic analysis

1 Introduction

Since 2010, we witnessed a dramatic change in the cyber threat landscape. Be-
fore that, the main motivation of cyber attacks was financial gain and therefore,
the goal was to infect as many computers as possible. While this kind of at-
tacks still exist and constitute the majority of the cyber attacks seen in the
wild [25], a new class of attacks has emerged and became the top priority risk
for both governmental and commercial organizations: targeted attacks. In tar-
geted attacks, well-organized operators target specific entities persistently with
high motivation, evade security defenses in place, employ advanced tools and tac-
tics, maintain long-time presence in target environment and operate slow and
stealthy to avoid detection [26].

2 Yanko Baychev, Leyla Bilge

Malware plays a vital role in the success of a targeted attack and is employed
almost in every phase of the attack lifecycle until the operator’s goal is achieved.
It is used to perform a wide range of tasks including compromising systems, es-
calating privileges, maintaining presence, exfiltrating data, communicating with
the operators over command and control servers, carrying out commands, etc.
Even though these tasks are not peculiar to targeted malware per se, targeted
malware is expected to act differently compared to traditional malware and in
this paper, we seek to understand whether this common belief is aligned with
the reality or not.

As the sophistication level of targeted attacks rises gradually in time, in-
creasing number of targeted attacks are being discovered using malware with
advanced stealth techniques or even non-persistent malware that only resides in
memory [27]. Recently cyber security professionals came up with a new term for
targeted attacks employing non-persistent in-memory malware and named them
as Advanced Volatile Threats [36], because there is no easy way to detect them
other than analyzing the volatile memory. In order to detect fileless malware and
also malware that hides its presence on the system by using advanced malware
stealth techniques such as hooking, injection, hollowing, etc., memory analysis is
a must and needed to be conducted along with dynamic analysis. In this paper,
we used popular open-source memory forensics tool called The Volatility Frame-
work [34], which can be integrated with the Cuckoo Sandbox [11] and offers wide
range of plugins for various memory related analysis tasks to be able to detect
fileless malware that remains solely in memory. Cuckoo Sandbox was configured
to dump full memory of the guest analysis machine just before the execution
finishes and run Volatility with selected plugins on the memory dump. We ad-
ditionally utilized YARA tool [32] to supplement behavioral characterization
of malware and included YARA rules that match certain behavioral patterns
during the execution.

Past evidence suggests that targeted attacks are significantly more impactful
compared to traditional malware attacks for the victims [33]. Therefore, they
deserve more attention and there is an immediate need for methodologies that
can distinguish them from traditional malware. However, before that we need to
first find out whether they are different at all such that depending on the result
more effort could be put to devise new detection methodologies. In this paper,
we aim at identifying the differences between targeted and traditional malware.
Unfortunately, obtaining a large-scale dataset that is representative for the real
targeted malware that is used in advanced persistent threats is difficult. One one
hand such attacks are more rare to see compared to the volume of other cyber
attacks. One the other hand, as this kind of attacks might include actions done
by a more skilled attacker manually, it might be even hard to identify them. For
this reason, in this paper, we employ a set of malware that is used in spearphish-
ing attacks. We believe that the general spearphishng malware will share some
behavioral similarities to more advanced targeted malware as they are both care-
fully choosing their victims and also some of the advanced persistent threats use
spearphishing as means of the infection vector. Therefore, it is possible that

Spearphishing Malware: Do we really know the unknown? 3

in our data we actually include some examples for more sophisticated targeted
malware. Our assumption here is that by analysing this dataset, it is possible
to achieve an approximation to how general targeted attacks behave differently
than the traditional malware.

We investigate the behavioral differences between targeted and traditional
malware by running them in a controlled environment. During the analysis pe-
riod, we extract a wide range of features from both the dynamic analysis and
memory analysis traces. Afterwards, we experiment with a number of machine
learning algorithms to find the most discriminative features and test the feasi-
bility of distinguishing targeted malware. The result of the extensive evaluation
made on spearphishingmalware used in the wild indicates that targeted mal-
ware behaves differently and can be distinguished from the traditional malware.
Note that our goal with this paper is not to propose a detection method for
targeted malware but to obtain insights about their differences. However, the
classification accuracy achieved using the raw features extracted from the dy-
namic analysis reports is good enough for many real-world threat intelligence
applications. For example, the methodology explained in this paper could be
used as a filtering step during targeted attack detection that involves in more
sophisticated analysis.

In summary, this paper makes the following contributions:

— We present the first study on understanding the differences of targeted mal-
ware from traditional malware.

— We extract an extensive list of dynamic analysis features from a broad per-
spective including behavioral patterns when fed to a machine learning clas-
sifier are capable of distinguishing targeted malware.

— We present a novel set of memory features extracted from memory analysis
that could be incorporated to targeted malware detection systems.

— We provide a comprehensive evaluation of the features using different ma-
chine learning algorithms and provide a detailed discussion about the most
discriminative features and their reasoning behind them.

2 Analyzing the Malware

Figure 1 illustrates the architecture of the system we devised to obtain insights
about malware that is used in spearphishing attacks. Before digging into the
details about which features we focus on and why, we will briefly summarize each
step in the process of analyzing the malware samples. These malware samples
were provided to us by Symantec and each of them were categorized by human
analysts whose main goal is to mine large amounts of e-mail data to identify
spearphishing attacks. This process does not only consist of data mining but
also reverse-engineering the binary that is attached to the mail. While we do
not know the details about the methodology adopted to identify the samples
provided to us, we are confident that the false positives in the data is fairly low as
each of them were carefully analyzed by these human analysts. The traditional

4 Yanko Baychev, Leyla Bilge

malware data, on the other hand, was build by randomly choosing malware
that is observed by Symantec during the targeted malware collection period.
Unfortunately, we could not acquire the binaries for these samples and therefore,
we needed to search for them ourselves.

To obtain the binaries of the malware samples, we download them from Virus
Total [31] and store them in our malware repository. Easy but also very efficient
way to reveal malware’s behavior once it infects a system is to run it in a con-
trolled environment and capture all the changes on the host and the network
during the analysis process [10]. Despite its obvious limitations, dynamic analysis
of malware in a sandbox environment is extensively used in malware analysis field
due to its convenience on analyzing malware in fast and automated manner. For
our work, we utilize a modified version of Cuckoo Sandbox [24]. Cuckoo Sandbox
is a very powerful and highly customizable open-source dynamic analysis sand-
box backed by a large community of researchers and developers. It leverages
memory analysis framework for conducting memory analysis. Each malware is
analyzed in the cuckoo sandbox and their analysis reports that contain both
information about their dynamic analysis behavior and the memory analysis
are stored in our database. Then, the reports are processed to extract a large
number of features that can capture the behavioral characteristics of malware.
Finally, as a last step, we employ a number of machine learning classifiers to
test whether targeted malware could be distinguished using the features we will
explain in the following section.

L=

Dynamic Analysis Sandbox

[Analysis Controller } <] Malware Repository

(Cuckoo) Analysis Reports
[> Database
Analysis Analysis (MongoDB)
VM-1 | «=e | VM-n s
~ > Feature f) Targeted
Memory Analysis Framewaork Extractor Malw_ra_re
(Volatility) Classifier

Fig. 1: System Architecture.

2.1 Features

A wide range of system-level artifacts are captured during the whole analysis
process of each malware sample. We examined the analysis reports in detail
to identify useful features for our purpose. Instead of utilizing high granularity

Spearphishing Malware: Do we really know the unknown? 5

Table 1: Network features.

l# ‘Feature Name

1 Number of UDP connections

2 Number of distinct IP addresses

3 Number of distinct UDP destination ports
4 Number of IRC connections

5 Number of HT'TP connections

6 Number of SMTP connections

7 Number of TCP connections

8 Number of ICMP connections

9 Number of hosts

10 Number of hosts with reverse DNS
11 Number of DNS requests

12 - 17|DNS request type frequency

18 Number of domains

19 - 22|Domain level frequency

23 - 27|Domain name length frequency

28 Is top websites visited

features that represent low level atomic operations [5,22], we decided to utilize
low granularity and mostly quantitative features that could represent malware
behavior from a wider aspect [18]. We identified a total of 754 features either by
defining new dynamic and memory features or adopting the existing ones from
state-of-the-art in malware classification [2,13,18,29]. These features are divided
into six categories: network features (28), file system features (174), registry
features (4), system call features(289), memory features (71) and miscellaneous
features (208). At total we have extracted 754 features.

Network Features During the execution of malware, we captured all incoming
and outgoing network traffic. From the network traffic we extracted a total of
28 network features such as number of DNS requests, TCP/IRC/SMPT/HTTP
connections, IPs contacted, etc. Most of these features are single features and
represent counts, therefore the name of each feature in Table 1 provides sufficient
information about the feature itself.

In the course of the analysis, we encountered only the following DNS requests
types; A, AAAA, MX, SRV, TXT, PTR. For each of these DNS record types,
we counted the number of DNS requests and kept them as features. For each
second, third, forth level domain name and the fully qualified domain names
we observed in the network, we counted number of queries as well. Finally, we
extracted some features to express the length of the domain names used by
malware. We calculated the number of domain names whose lengths fall into the
following ranges: 0-10. 11-16, 17-20, 20-32 and 32-cc.

6 Yanko Baychev, Leyla Bilge

File System Features Cuckoo Sandbox employs several injection and hooking
techniques while executing the malware in order to detect and capture the file
system operations including, access, read, create, modify and delete operations.
From these file system artifacts we extracted a total of 174 file system features
(see Table 2). We came across a wide range of file extensions of the created,
modified or deleted files throughout the analysis process. In order to character-
ize this behavior, we defined a feature vector, which we call the top extension
frequency, composed of top 34 extensions varying from ”dll”, ”"exe”, ”jpg” to
”tmp”, "txt” each corresponding to a specific extension and representing its
count. During the analysis of malware, it creates files under specific paths in
the file systems and typically these are good features to identify malware. These
paths are usually associated with environment variables and named as common
folder or known folder in Windows operating system [16]. We counted number of
times file operations were done on specific file paths and used them as features
in our analysis. For example, the following paths are some of the well-known
paths where malware often copies itself;

— C:\Windows\System32\

— C:\DOCUME"1\<user name>\LOCALS 1\ Temp\

— C:\Documents and Settings\All Users\

Another observation we had during the analysis phase is that files are created
in varying sizes from bytes to megabytes. After examining the file sizes in detail,
we decided not to utilize the size as a whole but in ranges and we picked the
following four size ranges in bytes; 0-64, 65-4096, 4097-262144 and 262144-c0. We
have also identified five types of files that malware often interacts with. These
file types are the files, the directories, the drivers, the pipes and the alternate
stream types. For each of these file types, we counted number of reads, accesses
and modify operations.

Malware samples in general read and access an extensive number of files
which are mostly duplicates or a noise because of the nested path traversal. To
obtain the unique list of such operations, we pre-processed and filtered out these
duplicates from the data. While five types of file artifacts are captured during
the analysis, in terms of access, read, modify, create and delete operations, we
did not build the frequency vectors for all of the file operations, but only for
the ones that are more characterizing for malware. For instance, the known
path frequency vector is constructed only for the file create, modify or delete
operations but not for the read or access operations.

Registry Features We extracted 4 features from the registry operations con-
ducted by malware. Similar to the file operations, malware samples read and
access an extensive number of registry keys. After we pre-processed them to ex-
clude the duplicates and noise, we counted the number of registry keys deleted,
modified, read and accessed.

System Call Features We have also included some features that we extracted
from the system call traces malware produces during its execution. To decrease

Spearphishing Malware: Do we really know the unknown? 7

Table 2: File system features.

l# ‘Feature Name

1 Number of files deleted

2 Number of files modified

3 Number of files deleted in distinct paths

4 Number of files deleted with distinct extensions

5-38 Top extension frequency of deleted files

39-52 |Known path frequency of deleted files

53 Number of files modified in distinct paths

54 Number of files modified with distinct extensions
55-88 | Top extension frequency of modified files
89-102 |Known path frequency of modified files
103-107|File type frequency of modified files

108 Number of files created

109 Number of files created with distinct extension
110 Number of files created in distinct path
111-114|File size frequency

115-148|Top extension frequency of created files
149-162|Known path frequency of created files

163 Number of files read

164-168|File type frequency of read files

169 Number of files accessed

170-174|File type frequency of accessed files

the number of features, we performed an aggregation over the system call types
(network, threading, hooking etc.) and counted number of system calls that fall
into one of the 16 categories we have identified.

Although tracking counts of system calls in individual categories can provide
good insights about the malware, some categories have disproportionally high
counts of system calls. To capture this behavior at a higher level, we calculated
proportion of number of system calls in each of the 16 categories over the total
number of system calls as well.

As system calls are generally not directly accessed by programs but via APIs,
we have also extracted the API calls made by the binaries. In our data, we have
observed 256 different API functions called by malware samples and for each of
these API calls we included a feature which represents the number of times the
particular APT call was made by malware.

Miscellaneous Features In addition to the features explained above, Cuckoo
sandbox generates analysis reports enriched with several other malware related
static or dynamic artifacts including API functions resolved, mutexes created,
services started, commands executed, etc. In order to incorporate these rich
artifacts into our analysis, we extracted a total of 208 miscellaneous features that
include the total number of resolved API functions and API files, the number of
times each of these API functions are resolved, the total number of commands

8 Yanko Baychev, Leyla Bilge

executed, number of services/mutexes created and started, number of YARA
signatures matched and for each signature how many times the matches were
identified. Although majority of the features in this category are based on the
dynamic analysis reports, we were also able to include few simple static analysis
features such as resolved API files and functions, strings included in the binaries.

We also leveraged the YARA tool [32] that comes with the Cuckoo Sand-
box. YARA is capable of identifying particular malicious behavior or generic
techniques adopted by malware. These signatures can provide valuable insights
into malware behavior when utilized as a feature. Note that we only include the
yara signatures that are related to behavioral characteristics. The malware spe-
cific yara signatures are excluded from our analysis so that they are not used by
the classifier to distinguish the malware family from the targeted malware rather
than the general traditional malware. For the sake of brevity, we do not list the
whole list of YARA signatures that are matched, however, in the evaluation sec-
tion we demonstrate the ones that are the most useful during the classification
process.

Memory Features We leveraged the infamous Volatility Framework [34] to
extract a large number of features from the memory introspection we performed
during our analysis. The targeted attacks typically perform obfuscation on the
malware they use and for that reason, without memory analysis it would be very
hard to fully observe the malicious behavior. Getting motivated from this insight,
we investigated memory indicators that could identify a malicious activity and
selected 13 Volatility plugins. The reason for this is that some plugins can take
very long time to complete and are not feasible to perform on thousands of
samples. From outputs of these plugins, we identified and extracted a total of
51 features. In Table 3, all extracted memory features are listed along with the
name of the Volatility plugin used for the feature. These features are a novel set
of features that have not been used in any other works before to our knowledge.

3 Experiments and Results

3.1 Experimental Setup

Dynamic analysis of the malware samples and experiments were performed on a
server with two quad-core Intel Xeon E5440 2.83 GHz processors, 16 GB DDR2
RAM, three 146 GB 10,000 RPM SAS hard drives and two Gigabit network
adapters. The server was running Ubuntu 12.04 LTS as host operating system
along with headless-mode VirtualBox (version 4.2.22) as the hypervisor.

We utilized a heavily modified and improved [20] version of Cuckoo Sand-
box (Cuckoo 1.3-dev by Brad Spengler) for dynamically analyzing the malware
samples and Volatility Framework (version 2.4) for analyzing the memory dumps
acquired at the end of execution. Malware was allowed to access the Internet dur-
ing the analysis. Note that we did not allow the malware to do large scale attacks
such as denial of service attacks. With the help of Pafish tool [21], we assessed

Spearphishing Malware: Do we really know the unknown? 9

Table 3: Memory features.

l# ‘Feature Name Vol. Plugin
1 Number of mutexes Mutantscan
2-5 |Mutex length frequency Mutantscan
6 Number of processes exited Pslist

7 Number of processes running Psxview
8-14 |Process list frequency Psxview
15-21|Module in common Windows process freq. |Dlllist
22-28| Avg. mod. in common Windows proc. freq.|Dlllist
29-31|Injection VAD tag frequency Malfind

32 |Number of injections Malfind

33 |Average number of injections per process |Malfind

34 Number of processes with privileges Privs

35 |Number of proc. with Administrator SID |Getsids
36-38|Hidden DLL type frequency Ldrmodules
39 |Number of services Svescan

40 |Number of driver names Devicetree
41 |Found duplicate driver name (0 or 1) Devicetree
42 |Number of device offsets Devicetree
43 |Number of device names Devicetree
44 Number of kernel drivers Modscan
45 Number of timers Timers

46 |Number of distinct timer periods Timers

47 |Number of distinct timer modules Timers

48 |Number of callbacks Callbacks
49 |Number of distinct callback types Callbacks
50 Number of distinct callback modules Callbacks
51 Number of distinct callback details Callbacks

the analysis environment against several anti-vm and anti-sandbox techniques
and hardened the environment to avoid detection by fixing the identified issues.
After the Cuckoo Sandbox was configured properly, all malware samples were
executed in parallel, each for a period of five minutes, on two virtual analysis
machines.

3.2 Data Set

Obtaining malware samples that are attached to targeted attacks is a challenging
task. While there are several malware repositories such as VirusShare [30] that
share a big volume of malware samples, information regarding their category
is not provided for most cases. Some cyber security firms dealing with targeted
attacks publish reports on attack campaigns and disclose hashes of files involved.
Although this is useful, the number of malware hashes in those reports is too
small for generalization.

To increase our knowledge about malware samples that are used in targeted
attacks, we obtained a list of manually chosen malware that are used in so-

10 Yanko Baychev, Leyla Bilge

phisticated spearphishing attacks. As we mentioned before, by analyzing these
spearphising malware we hope to achieve an approximation to how targeted at-
tacks behave as a spearphishing attack is a form of targeted attack itself. The
analyst in Symantec also provided an additional list of traditional malware sam-
ples for comparison. It is important to note that all of the targeted malware
samples were vetted and labeled manually by an analyst, not by an automated
process. We obtained 2032 targeted and 10K traditional malware hashes. After-
wards, we searched Virustotal [31] for hashes and managed to find 709 targeted
malware samples in Virustotal. We believe not finding the majority of the tar-
geted samples but the traditional samples in Virustotal is a good indicator for
the targetedness property of these malware samples.

After submitting them to our deployed Cuckoo Sandbox for analysis, only
471 were executed properly on our guest virtual machines by producing reports
containing system-wide artifacts. Dynamic analysis of the other 238 samples were
failed because either the analysis task was terminated shortly after the start or
no single process was created throughout the analysis period. It is possible that
these malware samples employ techniques for detecting the sandbox environment
or require newer operating system to execute. In order to have balanced sets
of targeted and traditional malware samples, we searched for only randomly
picked small fraction of the traditional malware hashes and downloaded 618
malware samples from Virustotal. 550 out of 618 traditional malware samples
were executed in the sandbox without any problems. Compared to the scale
of malware seen in the wild this is definitely a very small number, however,
unfortunately the number of spearphishing malware we were able to obtain was
very small and that was the reason for limiting ourselves to these numbers.

To be sure that our traditional malware set is not composed of a big cluster of
samples from the same category, therefore, we are not distinguishing the behav-
ior of a particular malware family from the targeted malware, we investigated the
AV labels of those 550 malware samples. From the selected top keywords from
all traditional malware samples, we constructed a global list of keywords and
number of their occurrences. Our traditional malware set includes a balanced
distribution over various malware types including some downloaders, backdoors,
zeus, password-stealers, autorun, autoit, etc. We also investigated keywords of
targeted malware samples to make sure that our targeted malware set is not
comprised of malware mostly with same type or functionality, e.g. ”dropper”,
”downloader”, etc. The top 20 keywords we identified have at least 10 and av-
erage of 40 matches each.

3.3 Leveraging Machine Learning

To evaluate the proposed method and the discriminative power of the features
extracted in terms of targeted malware classification, we conducted experiments
using the following supervised learning algorithms: Support Vector Machine
(SVM), Logistic Regression, k-Nearest-Neighbor (kNN), Decision Tree and Ran-
dom Forest. In all of our experiments, we used 5-fold cross validation where the
dataset is divided into five equally sized partitions with four partitions used to

Spearphishing Malware: Do we really know the unknown? 11

train the classifier and the remaining partition used for validation. This pro-
cess was repeated five times and resulting scores were averaged. Because we
have extracted a wide-variety of features each lying in differing ranges of value,
we employed standard feature scaling and centered the feature values around 0
with zero mean and unit variance to avoid biasing toward any feature resulting
misclassification.

Table 4: Targeted malware classification results.
[Algorithm [Accuracy[Precision[Recall [F1 [False-Pos.]AUC |

SVM RBF 89.27 % 193.51 % [80.90 %|(86.75 %|4.31 % 92.50 %
SVM Linear 89.27 % 191.36 % [83.15 %|(87.06 %|6.03 % 94.20 %
K-NN 88.29 % |84.95 % |88.76 %(86.81 %|12.07 % 88.35 %
Log. Regression|88.78 % [90.24 % |83.15 %|86.55 %6.90 % 91.85 %
Decision Tree |87.80 % |84.78 % |87.64 %|86.18 %(9.73 % 87.41 %
Random Forest (89.17 % [91.33 % [82.92 %|86.92 %(6.03 % 93.88 %

The obtained experiment results in Table 4 show that supervised learning
algorithms exhibited similar performance on accuracy measure and they all
achieved above 87% accuracy rate. There is also not a single algorithm that
outperformed others in most of the measures. Performance not being dependent
on a single algorithm suggests that the identified set of features are comprehen-
sive enough to characterize malware from different aspects and therefore ensure
high level of accuracy independent of the algorithm used for classification.

While both SVM algorithms achieved best result on accuracy with 89.27%,
SVM RBF yielded highest precision and lowest false-positive rate with 93.51%
and 4.31%, respectively. SVM Linear yielded best -1 measure with 87.06% and
k-Nearest Neighbor algorithm yielded best recall rate. As a measure representing
overall performance, computed AUC for SVM Linear algorithm was the highest
followed by Random Forest algorithm with a small margin.

3.4 Why is spearphishing malware different?

The results of the machine learning experiments suggest that the targeted mal-
ware can be distinguished from the traditional malware using the set of features
utilized in this study. In the following section, we will look into the list of most
discriminative features to understand why targeted malware is different than the
traditional malware and how this difference is captured by these top features.
In order to determine contribution of each feature to the prediction of tar-
geted malware, we performed feature selection using the Recursive Feature Elim-
ination (RFE) technique [1] which is commonly used for problems with small
sample size and high dimensionality along with Support Vector Machines [8]. As
its name suggests, RFE recursively eliminates features with smaller weights and
constructs the model repeatedly to compute the model accuracy. We employed

12 Yanko Baychev, Leyla Bilge

Table 5: Top 20 Features.
lInd. ‘ Cat. ‘Description ‘

672 |Misc |[Matched signature frequency: infostealer_mail
553 |Misc |Resolved top API function frequency: oleaut32.dll
680 |Misc |[Matched signature frequency: injection_runpe
666 |Misc |[Matched signature frequency: antidbg_windows
421 |Call |API function frequency: SHGetFolderPathW

395 |Call |API function frequency: FindWindowW

547 |Misc |Resolved top API function frequency: urlmon.dll
267 |Call |API function frequency: NtSetContextThread
468 |Call |API function frequency: InternetConnectW

459 |Call |API function frequency: HttpSendRequestW

411 |[Call |API function frequency: RtlDecompressBuffer
360 |Call |API function frequency: HttpOpenRequestW

80 |File |Number of files modified in distinct paths

52 |File |Top extension frequency of deleted files: tmp

434 |Call |API function frequency: CryptCreateHash

237 |Call [System call category percentage frequency: com
586 |Misc |[Resolved top API function frequency: sxs.dll

723 |Mem|Module in common Win. proc. freq: winlogon.exe

749 |Mem|Number of distinct timer modules
668 |Misc |Matched signature frequency: disables_uac

RFE with SVM Linear classifier which yielded best result in terms of area under
ROC curve and identified most discriminative 20 features in classifying targeted
malware. Top 20 features are presented in Table 5 in descending order starting
with the most discriminative feature.

Most of the identified top features in Table 5 align well with the behavioural
characteristics of modern malware [4]. In this section, we will provide a discus-
sion about the most interesting discriminative features going over the plots of
the empirical cumulative distribution functions (ECDF) for both targeted and
traditional malware (in ascending order according to index of feature in feature
vector).

Top extension frequency of deleted files - Tmp: This feature corre-
sponds to the number of files deleted during the malware execution with ex-
tension "tmp”. It is known that malware can download or drop temporary files
which can be used as additional payload or configuration files. Because of this
known characteristic, antivirus software can flag files having extension ”tmp”
as suspicious or malicious. Therefore, it is expected for a targeted malware to
delete temporary files after they are consumed to avoid getting the attention of
the antivirus software or the security analyst. This behavioral pattern is captured
with this feature and it is revealed in Figure 2 that targeted malware tends to
delete at least one temporary file almost twice as many times as the traditional
malware. Because while only 20% of the traditional malware samples deleted at
least one file with extension "tmp”, it is 38% for the targeted malware samples.

Spearphishing Malware: Do we really know the unknown? 13

System call category percentage frequency - Com: This feature corre-
sponds to the proportion of number of system calls in communication category
to the total number of system calls triggered by the malware. Difference between
the targeted and traditional malware’s empirical cumulative distribution func-
tions suggests that percentage of system calls initiated by traditional malware
related to the communication is almost 8 times more than the targeted malware.
It can be deduced from this behavior that targeted malware avoids initiating too
many communication attempts to avoid triggering any alarms which aligns well
with its stealthy nature.

API function frequency - NtSetContextThread: This feature corre-
sponds to the number of times NtSetContextThread function is called by the
malware. As the "Nt” prefix implies, NtSetContextThread is an Windows Na-
tive API system call that is used for modifying an existing thread’s context, e.g.
CPU registers. Malware utilizes this function for performing various advanced
actions including evading Microsoft’s EMET to execute shellcode, injecting code
into processes or anti-debugging. It is important to note that this particular func-
tion is also used in process hollowing technique [17] for changing a thread’s EIP
and EAX registers which is widely employed by the sophisticated and targeted
malware, i.e. Duqu. Difference in the traditional and targeted malware behavior
with regards to this feature is very clear in Figure 2 showing that while only 8%
of the traditional malware samples called NtSetContextThread API function,
59% of the targeted malware samples called it at least once which reveals the
sophisticated and state-of-the art nature of targeted malware.

API function frequency - HttpOpenRequestW: This feature corre-
sponds to the number of times HttpOpenRequestW function called by the mal-
ware. HttpOpenRequestW is an Windows Internet (WinInet) API function that
is used for creating an HTTP request. It is called by malware while accessing
a web resource or downloading a file. It is also known that malware hooks this
function to perform a wide variety of information theft attacks. Because WinInet
is a higher level API and also used by browsers, it allows malware to hide itself
in the regular network traffic.

API function frequency - FindWindowW: This feature corresponds to
the number of times FindWindowW function is called by the malware. FindWin-
dowW is an Windows API function that is used to get a handle to the window
with the given name or class. It is usually called by malware to search for a win-
dow that belongs to a specific security tool used in malware analysis, mostly a
debugger as an anti-debugging trick. It is also utilized in code injection in a very
stealthy manner. Only 8% of the traditional malware samples called FindWin-
dowW API function. On the other hand, almost half of the targeted malware
samples called it at least once, mostly more than once. This difference in plots
of ECDFs in Figure 2 indicates that targeted malware takes additional measures
to avoid being detected and analyzed which matches well with the previously
discussed characteristic of the targeted malware.

API function frequency - CryptCreateHash: CryptCreateHash is an
Windows API function that is used to initiate hashing of a stream of data. It

14 Yanko Baychev, Leyla Bilge

: T T T, Traditional
! ! | | o8 r
7777777777777777 R 1 "t 06
| i i i

0.64) -k 02|
00

s 10 15 20 2

! ! ! ! Lo, Targeted

e S By Tt es 7
| | | 0.6

ORI R SR I S o i
— Traditional \ T 02

— Targeted Y -
. i 0005101520253035

5‘ 10 1‘5 2‘0 25 30 % 10 15 20 2 2‘ A é B‘ 1‘0 1‘2 14
1. Top extension frequency of deleted files - TMP 2. System call category percentage frequency - COM 3. API function frequency - NtSetContextThread

ECDF

I I I I
0 60 80 100 120 140 160 180 a0 50

I I I
0 80 100 120 140 160 180

2 A 6 20 A 10 0
4. API function frequency - FindWindowW 5. APl function frequency - CryptCreateHash 6. Resolved top API function frequency - Urimon.dil
0.97
] e e I S e e S B
Pt ket el et bty ettt ettt N ettty ettt ettt it B T
o
o
L o O e L O S L A S S SR <
0.33
0.00 - - -
20 30 40 50 60 70 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
7. Resolved top API function frequency - Oleaut32.dll 8. Matched signature frequency - Antidbg_Windows 9. Matched signature frequency - Infostealer_Mail

Fig. 2: ECDF of top features for targeted and traditional samples.

is called by malware to perform cryptographic hashing functions to generate
encryption keys or obfuscating key internal data. In a report published about
evasive malware [9], obfuscating internal data is found among the four most
common evasive behaviours. Figure 2 shows that whereas only around 7% of the
traditional malware samples called CryptCreateHash function, it was called by
more than 40% of the targeted malware samples confirming the evasive nature
of the targeted malware by making it difficult to identify its true behaviour.

Resolved top API function frequency - Urlmon.dll: URLmon.dll pro-
vides URL Monikers API to perform Internet communications and its URL-
DownloadToFile (or URLDownloadToCacheFile) function is very effective to
download a resource to a specified filename via Internet Explorer with just one
call [15]. Therefore, it is commonly used in shellcode exploiting a vulnerability
and also in malicious scripts embedded in Office or PDF documents to drop
malware. Spear phishing campaigns with malicious document attachments or
zero-day exploits [25] are widely employed in targeted attacks and this charac-
teristic is captured in Figure 2 showing that while only less than 20% of the
traditional malware samples resolved the urlmon.dll file, it was resolved by al-
most half of the targeted malware samples.

Resolved top API function frequency - Oleaut32.dll: This feature cor-
responds to the number of functions resolved within oleaut32.dll file. Oleaut32.dll
provides a mechanism, OLE Automation, to access and manipulate objects in

Spearphishing Malware: Do we really know the unknown? 15

another application, e.g. ActiveX, Word macro, etc. It allows malware to execute
VBScript macros in remote Word and Excel applications for malicious activities
in a hidden way. In a report published in 2016 [25], it was found that Word
and Excel documents containing malicious code accounted for almost half of the
attachments in spear-phishing attacks used in targeted attacks. This difference
is clearly revealed in plots of ECDFs in Figure 2 in respect to oleaut32.dll file
where 70% of the targeted malware samples resolved this API file, while only less
than 30% of the traditional malware samples used it. When this and the previ-
ous features are both taken into account, it gives a clear picture of the attackers
techniques to target individuals or organisations via spear-phishing attacks.

Matched signature frequency - Antidbg Windows: This feature cor-
responds to the occurrence of a match of antidbg windows YARA signature.
Antidbg_windows signature checks if the malware contains strings of windows
names of popular debuggers and forensic tools which are indication of malware
employing anti-debugging tricks. Figure 2 shows that whereas only around 20%
of the traditional malware samples were discovered having anti-debugging tricks,
almost 70% of the targeted malware samples contained strings that are used to
determine the presence of debuggers or other security tools in the execution en-
vironment. This difference in plots of ECDF's, similar to FindWindowW feature,
aligns well with the targeted malware characteristics of making it hard for the
analysts or automated systems to detect and analyze it.

Matched signature frequency - Infostealer_Mail: This feature corre-
sponds to the occurrence of a match of infostealer_mail YARA signature. Infos-
tealer_mail signature checks if the malware attempts to collect credentials from
various local email client programs. Whereas only 3% of the traditional malware
samples were stealing information regarding the email, more than 40% of the
targeted malware samples as shown in Figure 2 were found harvesting email
credentials and addresses possibly to be used in spearphishing campaigns which
are widely conducted in targeted attacks such as APTs. It was found out in
a report published in 2016 that while the number of spearphishing campaings
were increased by 55% in year 2015, they became more stealthier and number
of recipients as well as the average duration of the campaigns fell by 39% and
33%, respectively [25].

Matched signature frequency - Injection_Runpe: This feature corre-
sponds to the occurrence of a match of injection_runpe YARA signature. Injec-
tion_runpe signature checks if the malware launches a new process and injects
code into it which can also include unpacking of code. The API functions fil-
tered in this signature including NtUnmapViewOfSection, NtSet ContextThread,
NtResumeThread, etc. [12] are commonly used in process hollowing technique
which allows stealthy code execution within another process’ address space and
is frequently used in targeted attacks. Only around 7% of the traditional mal-
ware samples were matched. On the other hand, more than 40% of the targeted
malware samples were identified as employing such sophisticated injection tech-
niques.

16 Yanko Baychev, Leyla Bilge

4 Related Work

Finding a suitable way to represent binary files lies at the heart of every method
or system presented so far to detect or classify malware via machine learning.
In this section a literature background about malware classification is provided
with a focus on the use of static and dynamic features in malware classification.

4.1 Static Feature Extraction

Static analysis is the process of examining a binary file without actually execut-
ing it in order to determine if it is malicious or not. Extracting static features
from a binary file to perform malware classification is carried out by static anal-
ysis tools or techniques.

[23] were among the first who introduced static features for malware de-
tection by employing several different classifiers. They conducted experiments
based on three different types of static features including Portable Executable
(PE), strings and byte sequence n-grams. From PE header of a binary, they ex-
tracted dynamic link library (DLL) information and constructed three different
feature vectors representing if a DLL was used, if a specific function inside a
DLL was called and count of unique function calls inside each DLL. Encoded
strings inside a binary was extracted and used as a feature. They also converted
binary files into hexadecimal codes and used byte sequences of codes as n-gram
features. Based on these three features, different classifiers are employed to clas-
sify new binaries as malicious or clean. While string features yielded the highest
accuracy, the best detection rate was achieved by using byte sequence n-grams.

Their work inspired and encouraged others to try similar approaches for
malware classification. [14] adopted and enhanced the byte sequence n-grams
technique. They achieved better results in detecting malicious binaries via clas-
sifiers including Support Vector Machine, Decision Tree and boosted versions of
them. [37] extracted API calls from PE header of a binary file similar to what [23]
did in their work and used them as features for classifying a binary as malicious
or not.

[28] disassembled the binary and then extracted the length and frequency of
function names. Based on the function name length features, they perform mal-
ware classification between different malware families and their results suggested
that function name length is significant as a feature in distinguishing malware
families.

While static features have been widely used to detect or classify malware
via machine learning, there exists some limitations. Authors assume that the
malware is unpacked or not encrypted and static features can be extracted right
away from the binary. However, it is very common for a malware to be packed
or encrypted and in some cases it is not possible to fully unpack or decrypt
malware. There also exists a wide variety of obfuscation techniques that can
thwart the whole process [19].

Spearphishing Malware: Do we really know the unknown? 17

4.2 Dynamic Feature Extraction

Dynamic analysis is the process of examining a binary file by executing it in a
controlled environment and capturing its behavior in order to determine if it is
malicious or not. Controlled environment where the analysis is conducted could
be a specially designed sandbox [6,11,35] offering virtual, emulated or even bare-
metal environment, but also a single computer equipped with dynamic analysis
tools.

[3] constructed a high level behavior profile consisting of system change
counts for process, file, registry and network categories for each binary sample
after running it in a virtual environment and collecting system events. Using the
behavioral profiles representing malware behavior as features and Normalized
Compression Distance (NCD) as distance metric, they conducted hierarchical
clustering on malware samples to cluster them into families. [5] extended the
previous work [3] by constructing a low level behavior profile using a generalized
form of system resources and system calls after running the sample in a dynamic
analysis sandbox [6]. They achieved high run-time performance by performing
hierarchical clustering using Locality Sensitive Hashing (LSH) and Jaccard index
as distance metric. While both of the previous works used an unsupervised algo-
rithm for the malware classification, [22] performed malware classification using
Support Vector Machines (SVM) by extracting features from analysis report
generated after running a malware sample in a dynamic analysis system [35].
Feature vectors in the works [5,22] were representing malware behavior using a
generalized form of the system calls and their parameters captured during the
analysis.

[29] executed binaries in a virtual environment and captured system calls
and their parameters with the help of an automated tool. A global list with
strings representing captured system calls and parameters is compiled. Feature
vector for each binary was constructed using this list and consisted of boolean
values for each string in the global list specifying whether it was encountered
during the analysis of the sample or not. They used supervised learning classi-
fiers both for classifying a binary as malicious or not and for classifying malware
into malware families. [13] extended the previous work by incorporating static
features including printable strings and function length frequency into the dy-
namic system call features. Function length frequency feature vector consists of
counts of functions for fixed length ranges. They conducted experiments for each
feature separately and also for the integrated features using different supervised
learning classifiers. All experimented classifiers achieved best results using the
integrated features. [2] presented a method for combining features from six dif-
ferent sources including three static sources, two dynamic sources and one source
containing statistics about the other sources. They achieved high accuracy clas-
sifying binaries as malicious or not using SVM classifier.

[18] proposed a system consisting of two components, one for analyzing bi-
naries dynamically and one for classification and clustering. 65 features in three
categories including file, registry and network were extracted from the artifacts
captured during the dynamic analysis. Extracted features were in low granular-

18 Yanko Baychev, Leyla Bilge

ity, mostly counts, e.g. number of files created, unique number of extensions of
the created files, file size, etc. Memory artifacts were also collected during the
analysis phase but used only for signature matching to enhanced labeling, but
not included in the feature vector. Experiments conducted using wide range of
supervised learning classifiers in order to classify binaries as malicious or not and
achieved high accuracy. They also performed clustering using several different
distance metrics and parameters and presented results in terms of accuracy and
performance.

There is also considerable amount of work that utilizes DNS features for
classification. [7] identified malicious domains by monitoring the DNS traffic
passively, extracted 15 features from the monitored traffic and achieved high
detection rate. Types of features defined in terms of granularity are similar to
the features presented in this paper.

5 Conclusion

Targeted attacks constitute one of the greatest risks for many organizations. As
they are typically carefully prepared and designed particularly for the victims,
they are harder to detect both during the infection and the further phases of the
attacks. In this paper, we put an effort in understanding whether the malware
that is used in targeted attacks could be distinguished from traditional malware.
In big organizations, the security products in place produce many malware de-
tection alerts. Unfortunately, the number of alerts in general is too high and
therefore too overwhelming for the security analysts who are responsible for
prioritizing the most risky attacks. Hence, a methodology to identify correctly
targeted attacks from the haystack of attacks organizations everyday face with
would be very beneficial for the organizations.

In this paper, we first aimed at understanding whether malware that is used
in targeted attacks is different from traditional malware. To achieve this, we
dynamically analyzed a substantial amount of targeted and traditional malware
and compared their behavior. We profiled the behavior of malware and their
execution characteristics by extracting over 700 features that could represent
the network, host and memory behavior of the malware analyzed. We then,
experimented with a number of machine learning algorithms and found out that
while not perfectly, targeted malware could be distinguished from traditional
malware. Furthermore, we have shown that using raw simplistic features that
could be easily calculated from the dynamic analysis traces of executables, it
is possible to achieve good classification accuracies. This is a very important
finding as it opens the door for future works that could focus on improving the
methodology we proposed in this paper.

References

1. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of
microarray gene-expression data. Proceedings of the national academy of sciences
99(10), 6562-6566 (2002)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Spearphishing Malware: Do we really know the unknown? 19

Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the
static/dynamic gap. In: Proceedings of the 5th ACM workshop on Security and
artificial intelligence. pp. 3-14. ACM (2012)

Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Au-
tomated classification and analysis of internet malware. In: International Workshop
on Recent Advances in Intrusion Detection. pp. 178-197. Springer (2007)
Barbosa, G.N., Branco, R.R.: Prevalent characteristics in modern malware. Black
Hat USA (2014)

Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: NDSS. vol. 9, pp. 8-11 (2009)

Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A tool for analyzing malware. na
(2006)

Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious do-
mains using passive dns analysis. In: Ndss (2011)

Chen, X.w., Jeong, J.C.: Enhanced recursive feature elimination. In: Machine
Learning and Applications, 2007. ICMLA 2007. Sixth International Conference
on. pp. 429-435. IEEE (2007)

Christopher, K.: Evasive malware exposed and deconstructed. RSA Conference
(2015)

Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys (CSUR) 44(2),
6 (2012)

Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The cuckoo sandbox (2012)
Harrell, C.: Prefetch file meet process hollowing. https://journeyintoir.
blogspot.be/2014/12/prefetch-file-meet-process-hollowing_17.html
(2014)

Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. Journal of Network and Computer Appli-
cations 36(2), 646-656 (2013)

Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild.
In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 470-478. ACM (2004)

M-Labs: Reversing malware command and control: From sockets to
com. FireEye, https://www.fireeye.com/blog/threat-research/2010/08/
reversing-malware-command-control-sockets.html (2010)

Microsoft: Common folder variables. https://www.microsoft.com/security/
portal/mmpc/shared/variables.aspx (2015)

MITRE: Process hollowing. https://attack.mitre.org/wiki/Technique/T1093
(2016)

Mohaisen, A., Alrawi, O., Mohaisen, M.: Amal: High-fidelity, behavior-based au-
tomated malware analysis and classification. Computers & Security 52, 251-266
(2015)

Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Computer security applications conference, 2007. ACSAC 2007. Twenty-third
annual. pp. 421-430. IEEE (2007)

Optiv: Improving reliability of sandbox results. https://www.optiv.com/blog/
improving-reliability-of-sandbox-results (2014)

Ortega, A.: Pafish (paranoid fish). https://github.com/a®Ortega/pafish/ (2012)
Rieck, K., Holz, T., Willems, C., Diissel, P., Laskov, P.: Learning and classification
of malware behavior. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 108-125. Springer (2008)

20

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Yanko Baychev, Leyla Bilge

Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for de-
tection of new malicious executables. In: Security and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on. pp. 38-49. IEEE (2001)

Spengler, B.: Modified edition of cuckoo. Github, https://github.com/
brad-accuvant/cuckoo-modified (2013)

Symantec: Internet Security Threat Report Vol. 21. https://www.symantec.com/
security-center/threat-report (April 2016)

Tankard, C.: Advanced persistent threats and how to monitor and deter them.
Network security 2011(8), 16-19 (2011)

Teller, T., Hayon, A.: Enhancing automated malware analysis machines with mem-
ory analysis. USA: Black Hat (2014)

Tian, R., Batten, L.M., Versteeg, S.: Function length as a tool for malware classi-
fication. In: Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd Inter-
national Conference on. pp. 69-76. IEEE (2008)

Tian, R., Islam, R., Batten, L., Versteeg, S.: Differentiating malware from clean-
ware using behavioural analysis. In: Malicious and Unwanted Software (MAL-
WARE), 2010 5th International Conference on. pp. 23-30. IEEE (2010)
VirusShare: Virusshare.com - because sharing is caring. https://virusshare.com/
(2017)

Virustotal: Virustotal - free online virus, malware and url scanner. https://www.
virustotal.com/ (2012)

Virustotal: Yara - the pattern matching swiss knife for malware researchers. https:
//virustotal.github.io/yara/ (2014)

Virvilis, N., Gritzalis, D., Apostolopoulos, T.: Trusted computing vs. advanced
persistent threats: Can a defender win this game? In: Ubiquitous Intelligence and
Computing, 2013 IEEE 10th International Conference on and 10th International
Conference on Autonomic and Trusted Computing (UIC/ATC). pp. 396-403. IEEE
(2013)

Walters, A.: The volatility framework: Volatile memory artifact extraction utility
framework (2007)

Willems, C., Holz, T., Freiling, F.: Cwsandbox: Towards automated dynamic bi-
nary analysis. IEEE Security and Privacy 5(2), 32-39 (2007)

Wilson, T.: Move over, apts — the ram-based advanced volatile threat is spinning up
fast. DarkReading, http://www.darkreading.com/vulnerabilities---threats/

move-over-apts----the-ram-based-advanced-volatile-threat-is-spinning-up-fast/

d/d-id/1139211 (2013)

Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent pe-malware detection
system based on association mining. Journal in computer virology 4(4), 323-334
(2008)

