
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

EnTrust: Regulating Sensor Access by
Cooperating Programs via Delegation Graphs

Giuseppe Petracca, Pennsylvania State University, US; Yuqiong Sun, Symantec Research
Labs, US; Ahmad-Atamli Reineh, Alan Turing Institute, UK; Patrick McDaniel, Pennsylvania

State University, US; Jens Grossklags, Technical University of Munich, DE; Trent Jaeger,
Pennsylvania State University, US

https://www.usenix.org/conference/usenixsecurity19/presentation/petracca

EnTrust: Regulating Sensor Access by Cooperating Programs
via Delegation Graphs

Giuseppe Petracca
Penn State University, US

gxp18@cse.psu.edu

Yuqiong Sun
Symantec Research Labs, US
yuqiong_sun@symantec.com

Ahmad-Atamli Reineh
Alan Turing Institute, UK

atamli@turing.ac.uk

Patrick McDaniel
Penn State University, US

mcdaniel@cse.psu.edu

Jens Grossklags
Technical University of Munich, DE

jens.grossklags@in.tum.de

Trent Jaeger
Penn State University, US

tjaeger@cse.psu.edu

Abstract
Modern operating systems support a cooperating pro-
gram abstraction that, instead of placing all function-
ality into a single program, allows diverse programs to
cooperate to complete tasks requested by users. How-
ever, untrusted programs may exploit such interactions
to spy on users through device sensors by causing priv-
ileged system services to misuse their permissions, or
to forward user requests to malicious programs inadver-
tently. Researchers have previously explored methods
to restrict access to device sensors based on the state of
the user interface that elicited the user input or based
on the set of cooperating programs, but the former ap-
proach does not consider cooperating programs and the
latter approach has been found to be too restrictive for
many cases. In this paper, we propose EnTrust, an
authorization system that tracks the processing of in-
put events across programs for eliciting approvals from
users for sensor operations. EnTrust constructs dele-
gation graphs by linking input events to cooperation
events among programs that lead to sensor operation
requests, then uses such delegation graphs for eliciting
authorization decisions from users. To demonstrate this
approach, we implement the EnTrust authorization sys-
tem for Android OS. In a laboratory study, we show that
attacks can be prevented at a much higher rate (47-67%
improvement) compared to the first-use approach. Our
field study reveals that EnTrust only requires a user
effort comparable to the first-use approach while incur-
ring negligible performance (<1% slowdown) and mem-
ory overheads (5.5 KB per program).

1 Introduction
Modern operating systems, such as Android OS, Ap-
ple iOS, Windows Phone OS, and Chrome OS, support
a programming abstraction that enables programs to
cooperate to perform user commands via input event
delegations. Indeed, an emergent property of modern
operating systems is that system services are relatively
simple, provide a specific functionality, and often rely on
the cooperation with other programs to perform tasks.

For instance, modern operating systems now ship with
voice-controlled personal assistants that may enlist apps
and other system services to fulfill user requests, reach-
ing for a new horizon in human-computer interaction.

Unfortunately, system services are valuable targets
for adversaries because they often have more permis-
sions than normal apps. In particular, system services
are automatically granted access to device sensors, such
as the camera, microphone, and GPS. In one recent case
reported by Gizmodo [1], a ride-sharing app took ad-
vantage of Apple iOS system services to track riders.
In this incident, whenever users asked their voice assis-
tant “Siri, I need a ride”, the assistant enlisted the ride-
sharing app to process the request, which then leveraged
other system services to record the users’ device screens,
even while running in the background. Other online
magazines have reported cases of real-world evidence
that apps are maliciously colluding with one another to
collect and share users’ personal data [2, 3, 4].

Such attacks are caused by system services being
tricked into using their permissions on behalf of mali-
cious apps (confused deputy attacks [5, 6]), or malicious
apps exploiting their own privileges to steal data, and
a combination of the two. Researchers have previously
shown that such system services are prone to exploits
that leverage permissions only available to system ser-
vices [7]. Likewise, prior work has demonstrated that
system services inadvertently or purposely (for function-
ality reasons) depend on untrusted and possibly mali-
cious apps to help them complete tasks [8].

Such attacks are especially hard to prevent due to two
information asymmetries. System services are being ex-
ploited when performing tasks on behalf of users, where:
(1) users do not know what processing will result from
their requests and (2) services do not know what pro-
cessing users intended when making the request. Cur-
rent systems employ methods to ask users to authorize
program access to sensors, but to reduce users’ autho-
rization effort they only ask on a program’s first use of
that permission. However, once authorized, a program
can utilize that permission at will, enabling programs

USENIX Association 28th USENIX Security Symposium 567

to spy on users as described above. To prevent such
attacks, researchers have explored methods that bind
input events, including facets of the user interface used
to elicit those inputs, to permissions to perform sen-
sor operations [9, 10, 12]. Such methods ask users to
authorize permissions for those events and reuse those
permissions when the same event is performed to re-
duce the user burden. Recent research extends the col-
lection of program execution context (e.g., data flows
and/or GUI flows between windows) more comprehen-
sively to elicit user authorizations for sensitive opera-
tions [16, 11]. However, none of these methods addresses
the challenge where an input event is delivered to one
program and then a sensor operation, in response to
that event, is requested by another program in a series
of inter-process communications, a common occurrence
in modern operating systems supporting the cooperat-
ing program abstraction.

Researchers have also explored methods to prevent
unauthorized access by regulating inter-process commu-
nications (IPCs) and by reducing the permissions of pro-
grams that perform operations on behalf of other pro-
grams. First, prior work developed methods for block-
ing IPC communications that violate policies specified
by app developers [8, 18, 19, 21, 22]. However, such
methods may prevent programs from cooperating as ex-
pected. Decentralized information flow control [23, 24]
methods overcome this problem by allowing programs
with the authority to make security decisions and make
IPCs that may otherwise be blocked. Second, DIFC
methods, like capability-based systems in general [34],
enable reduction of a program’s permissions (i.e., callee)
when performing operations on behalf of other pro-
grams (i.e., callers). Initial proposals for reducing per-
missions simply intersected the parties’ permissions [7],
which however was too restrictive because parties would
have their permissions pruned after the interaction with
less privileged parties. DIFC methods, instead, provide
more flexibility [20], albeit with the added complex-
ity of requiring programs to make non-trivial security
decisions. Our insight to simplify the problem is that
while DIFC methods govern information flows compre-
hensively to prevent the leakage of sensitive data avail-
able to programs, users instead want to prevent pro-
grams from abusing sensor access to obtain sensitive
data in the first place.

In addition, prior work has also investigated the use
of machine learning classifiers to analyze the contextu-
ality behind user decisions to grant access to sensors
automatically [14, 15]. Unfortunately, the effectiveness
of the learning depends on the accuracy of the user de-
cisions while training the learner. Therefore, we firmly
believe that additional effort is necessary in improving
user decision making before the user decisions can be
used to train a classifier.

In this work, we propose the EnTrust authorization
system to prevent malicious programs from exploiting

cooperating system services to obtain unauthorized ac-
cess to device sensors. At a high-level, our insight is to
combine techniques that regulate IPC communications
of programs of different privilege levels with techniques
that enable users to be aware of the permissions asso-
ciated with an input event and decide whether to grant
such permissions for the identified flow context. The for-
mer techniques identify how a task is “delegated” among
cooperating programs to restrict the permissions of the
delegatee.1 The latter techniques expose more contex-
tual information to a user, which may be useful to make
effective authorization decisions.

However, combining these two research threads re-
sults in several challenges. First, we must be able to
associate input events with their resulting sensor oper-
ations in other programs to authorize such operations
relative to the input events and sequence of cooperating
programs. Prior work does not track how processing re-
sulting from input events is delegated across programs
[9, 10, 11, 12], but failing to do so results in attack
vectors exploitable by an adversary. In EnTrust, we
construct delegation graphs that associate input events
with their resulting sensor operations across IPCs to
authorize operations in other programs.

Second, multiple, concurrent input events and IPCs
may create ambiguity in tracking delegations across pro-
cesses that must be resolved to ensure correct enforce-
ment. Prior work either makes assumptions that are
often too restrictive or require manual program annota-
tions to express such security decisions. EnTrust lever-
ages the insights that input events are relatively infre-
quent, processed much more quickly than users can gen-
erate distinct events, and are higher priority than other
processing. It uses these insights to ensure that an un-
ambiguous delegation path can be found connecting each
input event and sensor operation, if one exists, with lit-
tle impact on processing overhead.

Third, we must develop a method to determine the
permissions to be associated with an input event for
other programs that may perform sensor operations.
Past methods, including machine learning techniques
[14, 15], depend on user decision making to select the
permissions associated with input events, but we wonder
whether the information asymmetries arising from dele-
gation of requests across programs impair user decision
making. In EnTrust, we elicit authorization decisions
from users by using delegation paths. We study the im-
pact of using delegation paths on users’ decision making
for both primed and unprimed user groups. Historically,
there has been a debate on whether users should be con-
sidered a weak link in security [56, 57]. We examine this
argument in a specific context by investigating if users
can make informed security decisions given informative,
yet precise, contextual information.

We implement and evaluate a prototype of the
EnTrust authorization system for Android OS. We find
that EnTrust significantly reduces exploits from three

568 28th USENIX Security Symposium USENIX Association

Figure 1: Possible attack vectors when diverse programs interact via input event delegations in a cooperating model. For
consistency, we present the attack scenarios in terms of voice assistants receiving input events via voice commands; however,
similar attack scenarios are possible for input events received by programs via Graphical User Interface (GUI) widgets rendered
on the users’ device screen.

canonical types of attack vectors possible in systems
supporting cooperating programs, requires little addi-
tional user effort, and has low overhead in app perfor-
mance and memory consumption. In a laboratory study
involving 60 human subjects, EnTrust improves attack
detection by 47-67% when compared to the first-use au-
thorization approach. In a field study involving 9 human
subjects, we found that - in the worst scenarios seen -
programs required no more than four additional manual
authorizations from users, compared to the less secure
first-use authorization approach; which is far below the
threshold that is considered at risk for user annoyance
and habituation [33]. Lastly, we measured the over-
head imposed by EnTrust via benchmarks and found
that programs operate effectively under EnTrust, while
incurring a negligible performance overhead (<1% slow-
down) and a memory footprint of only 5.5 kilobytes, on
average, per program.

In summary, we make the following contributions:
• We propose a method for authorizing sensor opera-

tions in response to input events performed by co-
operating programs by building unambiguous del-
egation graphs. We track IPCs that delegate task
processing to other programs without requiring sys-
tem service or app code modifications.

• We propose EnTrust, an authorization system that
generates delegation paths to enable users to autho-
rize sensor operations, resulting from input events,
and reuse such authorizations for repeated requests.

• We implement the EnTrust prototype and test its
effectiveness with a laboratory study, the users’ au-
thorization effort with a field study, and perfor-
mance and memory overhead via benchmarks.

2 Problem Statement
In current operating systems, users interact with pro-
grams that initiate actions targeting sensors, but users
do not have control over which programs are going to
service their requests, or how such programs access sen-
sors while servicing such requests. Unfortunately, three
well-studied attack vectors become critical in operating
systems supporting a cooperating program abstraction.

Confused Deputy — First, a malicious program
may leverage an input event as an opportunity to con-
fuse a more privileged program into performing a sen-
sitive operation. For example, a malicious voice assis-

tant may invoke the screen capture service at each voice
command (left side of Figure 1). The malicious voice
assistant may therefore succeed in tricking the screen
capture service into capturing and inadvertently leaking
sensitive information (e.g., a credit card number written
down in a note). In this scenario, the user only sees the
new note created by the notes app, whereas the screen
capture goes unnoticed. Currently, there are over 250
voice assistants available to the public on Google Play
with over 1 million installs, many by little known or
unknown developers.

Trojan Horse — Second, a program trusted by the
user may delegate the processing of an input event to an
untrusted program able to perform the requested task.
For example, a trusted voice assistant may activate a
camera app to serve the user request to take a selfie
(middle of Figure 1). However, the camera app may
be a Trojan horse app that takes a picture, but also
records a short audio via the microphone, and the user
location via GPS (e.g., a spy app2 installed by a jealous
boyfriend stalking on his girlfriend). Researchers re-
ported over 3,500 apps available on Google Play Store
that may be used as spyware apps for Intimate Partner
Violence (IPV) [25]. In this scenario, the user only sees
the picture being taken by the camera app, whereas the
voice and location recordings go unnoticed, since a cam-
era app is likely to be granted such permission. Also,
the ride-sharing attack in the introduction is another
example of this attack. Such attacks are possible be-
cause even trusted system services may inadvertently
leverage malicious apps and/or rely on unknown apps
by using implicit intents. An implicit intent enables any
program registered to receive such intents to respond to
IPCs when such intents are invoked. Researchers have
reported several ways how programs can steal or spoof
intents intended for other programs [26, 27, 28]. We
performed an analysis of system services and applica-
tions distributed via the Android Open Source Project
(AOSP), and found that 10 system programs out of a
total of 69 (14%) use implicit intents.

Man-In-The-Middle — Third, a request generated
by a program trusted by the user may be intercepted
by a malicious program, which can behave as a man-in-
the-middle in serving the input event in the attempt to
obtain access to unauthorized data (right side of Fig-
ure 1). For example, a legitimate banking app may
adopt the voice interaction intent mechanism to allow

USENIX Association 28th USENIX Security Symposium 569

customers to direct deposit a check via voice assistant
with a simple voice command (e.g., “deposit check”).3
A malicious program may exploit such a service by reg-
istering itself with a voice assistant as able to service a
similar voice interaction, such as “deposit bank check.”
Therefore, whenever the user instantiates the “deposit
bank check” voice command, although the user expects
the legitimate banking app to be activated, the mali-
cious app is activated instead. The malicious app opens
the camera, captures a frame with the check, and sends
a spoofed intent to launch the legitimate banking app,
all while running in the background. In this scenario,
the user only sees the trusted banking app opening a
camera preview to take a picture of the check. This is a
realistic threat. We performed an analysis of 1,000 apps
(among the top 2,000 most downloaded apps on Google
Play Store) and found that 227 apps (23%) export at
least a public service or a voice interaction intent. Apps
were selected from the Google Play Store among those
apps declaring at least one permission to access a sen-
sitive sensor (e.g., camera, microphone, or GPS).

Security Guarantee. To mitigate such attack vec-
tors, an authorization mechanism must provide the fol-
lowing guarantee, for any sensor operation to be autho-
rized, that operation must be: (1) initiated by an input
event; (2) authorized for the input event to trigger the
sensor operation; and (3) authorized for the sequence of
programs receiving the input event directly or indirectly
through IPCs leading to the program performing the sen-
sor operation. Such a guarantee ensures that any sensor
operation must be initiated by an input event, the input
event must imply authorization of the resultant sensor
operation by the requesting program, and all programs
associated with communicating the request for the sen-
sor operation must be authorized to enable the sensi-
tive data to be collected by the requesting program.
To achieve the security guarantee above, we require a
mechanism that accurately tracks the delegations lead-
ing from input events to resulting sensor operations, as
well as a mechanism to authorize sensor operations to
collect sensitive data given input events and delegations.

Regarding tracking delegations, a problem is that de-
termining whether an IPC derives from an input event
or receipt of a prior IPC depends on the data flows
produced by the program implementations in general.
Solving this problem requires data flow tracking, such
as performed by taint tracking. However, taint track-
ing has downsides that we aim to avoid. Static taint
tracking can be hard to use and be imprecise [30] and
dynamic taint tracking has non-trivial overhead [29]. In-
stead, we aim to explore solutions that ensure all sensor
operations resulting from an input event are detected
(i.e., we overapproximate flows) without heavyweight
analysis or program modifications.

Authorizing sensor operations to collect sensitive
data, given an input event and one or more delegations,
depends on determining the parties involved in the del-

egation as well as the user’s intent when generating the
event. Methods that restrict the permissions of an op-
eration to the intersection of permissions granted to the
parties involved [7], have been found to be too restric-
tive in practice. Decentralized information flow con-
trol [23, 24] (DIFC) prevents information leakage while
allowing some privileged programs to make flexible se-
curity decisions to determine when to permit communi-
cations that are normally unauthorized, which has been
applied to mobile systems [20, 13]. However, these infor-
mation flow control techniques focus on preventing the
leakage of sensitive information available to programs,
whereas the main goal here is to prevent programs from
obtaining access to sensitive information in the first
place by abusing sensor access. To address this problem
more directly, researchers have explored techniques that
enable users to express the intent of their input events
to authorize sensor operations, binding this intent to the
context in which the input event was elicited, such as
the graphical user interface (GUI) context [9, 10, 11]. In
IoT environments, researchers have similarly explored
gathering program execution context (e.g., data flows)
to enable users to authorize IoT operations more accu-
rately [16]. However, none of these techniques account
for delegations of tasks to other processes. We aim to
explore methods for eliciting user authorizations for sen-
sor operations using contextual information related to
the tracking of input events and subsequent delegations.

Further, researchers have explored learning methods
to predict permissions for sensor operation based on
prior user decisions [14, 15]. However, accurate user
decision making is vital for improving the accuracy of
these learning techniques.

3 Security Model

Trust Model – We assume that the system (e.g., Linux
kernel, operating system, system services, and device
drivers) is booted securely, runs approved code from
device vendors, and is free of malice; user-level programs
(e.g., applications) are isolated from each other via the
sandboxing mechanism using separated processes [35,
36]; and, by default, user-level programs have no direct
access to sensors due to the use of a Mandatory Access
Control (MAC) policy [37, 38] enforced from boot time.
We assume the use of trusted paths, protected by MAC,
allowing users to receive unforgeable communications
from the system, and providing unforgeable input events
to the system. Our assumptions are in line with existing
research on trusted paths and trusted user interfaces for
browsers [39], X window systems [40, 41], and mobile
operating systems [42].

Threat Model – We assume that users may install
programs from unknown sources that may be malicious,
then grant such programs access to sensors at first use.
Despite the default isolation via sandboxing, programs
may communicate via IPC mechanisms (i.e., intents or

570 28th USENIX Security Symposium USENIX Association

Figure 2: EnTrust Authorization Method – Input events,
handoff events, and sensor operations are linked via delega-
tion graphs to compute unambiguous delegation paths for
user authorization of sensor operations.

broadcast messages). Thus, user-level programs (e.g.,
apps) may leverage such communication to exploit the
attack vectors described in Section 2. Our objective is to
provide a mechanism that helps users control how coop-
erating programs access sensors. How programs manage
and share the data collected from sensors is outside the
scope of our research. Researchers have already exam-
ined solutions to prevent data leakage based on taint
analysis [29, 30, 31, 18] and Decentralized Information
Flow Control (DIFC) [20, 23, 24, 32].

4 EnTrust Authorization Design
In this section, we describe our proposed framework,
EnTrust, designed to restrict when programs may per-
form sensor operations by requiring each sensor oper-
ation to be unambiguously associated with an input
event, even if the sensor operation is performed by
a program different from the one receiving the input
event. Figure 2 provides an overview of the EnTrust
authorization system, which consists of five steps. In
the first three steps, EnTrust mediates and records in-
put events, inter-process communication events (hand-
off events), and sensor operation requests, respectively,
to construct a delegation graph connecting input events
to their handoff events and sensor operation requests.
In the fourth step, EnTrust uses the constructed del-
egation graph to compute an unambiguous delegation
path to a sensor operation request from its originating
input event. Unless the authorization cache contains a
user authorization for the constructed delegation path
already, the fifth step elicits an authorization from the
user for the delegation path, and caches the authoriza-
tion for later use for the same delegation path. Option-
ally, users can review their prior decisions and correct
them via an audit mechanism that logs past authorized
and denied delegation graphs.

4.1 Building Delegation Graphs
The first challenge is to link input events to all the sen-
sor operations that result from cooperating programs
processing those events and then construct delegation
graphs rooted at such input events.

Figure 3: Delegation graphs connect input events with op-
eration requests for sensors via handoff events.

First, for each input event received via a sensor s
for a program pi, EnTrust creates an input event tuple
e = (c,s, pi, t0), where c is the user interface context cap-
tured at the moment the input event occurred; s is the
sensor through which the event was generated; pi is the
program displaying its graphical user interface on the
screen and receiving the input event e; and t0 is the time
of the input event (step 1 in Figure 2). Note: EnTrust
is designed to mediate both input events coming from
input sensors (e.g., touch events on widgets rendered on
the screen) as well as voice commands captured via the
microphone. Voice commands are translated into text
by the Google Cloud Speech-to-Text service.

Second, after receiving the input event, program pi
may hand off the event to another program p j. EnTrust
mediates handoff events by intercepting spawned in-
tents and messages exchanged between programs [43]
and models them as tuples h = (pi, p j, ti), where pi is
the program delegating the input event, p j is the pro-
gram receiving the event, and ti is the time the event
delegation occurred (step 2 in Figure 2).

Third, when the program p j generates a request r for
an operation o targeting a sensor d, EnTrust models
the request as a tuple r = (p j,o,d, t j), where p j is the
program requesting the sensor operation, o is the type of
sensor operation requested, d is the destination sensor,
and t j is the time the sensor operation request occurred
(step 3 in Figure 2).

Lastly, EnTrust connects sensor operation requests to
input events via handoff events by constructing a del-
egation graph to regulate such operations, as shown in
Figure 3. A delegation graph is a graph, G = (V,E),
where the edges (u,v) ∈ E represent the flow of input
events to programs and sensors, and the vertices, v ∈V ,
represent the affected programs and sensors. Figure 3
shows a simple flow, whereby a source sensor s receives
an input event e that is delivered to a program pi, which
performs a handoff event h to a program p j that per-
forms an operation request r for a destination sensor
d. Thus, there are three types of edges: input event
to program (user input delivery), program to program
(handoff), and program to sensor operation request (re-
quest delivery).

Upon mediation of a sensor request r, EnTrust com-
putes the associated delegation path by tracing back-
wards from the sensor request r to the original input
event e. Hence, the operation request r = (p j,o,d, t j)
above causes a delegation path: (c,s, pi, t0) → (pi, p j, ti)
→ (p j,o,d, t j) to be reported in step 4 in Figure 2.
Delegation paths are then presented to the user for au-
thorization (see Section 4.3). The identified delegation
path is shown to the user using natural language, in a

USENIX Association 28th USENIX Security Symposium 571

Figure 4: Two scenarios that create ambiguity. Multiple in-
put events or handoff events delivered to the same program.

manner similar to first-use authorizations. We assess
how effectively users utilize delegation paths to produce
authorizations in a laboratory study in Section 6.2.

4.2 Computing Delegation Paths
Critical to computing delegation paths is the ability for
EnTrust to find an unambiguous reverse path from the
sensor operation request r back to an input event e. In
particular, a delegation path is said to be unambiguous
if and only if, given an operation request r by a program
p j for a sensor d, either there was a single input event
e for program p j that preceded the request r, or there
was a single path pi → p j in the delegation graph, where
program pi received a single input event e.

To ensure unambiguous delegation paths without pro-
gram modification, we need to define the conditions un-
der which operations that create ambiguities cannot oc-
cur. First, ambiguity occurs if the same program pi re-
ceives multiple input events and then performs a hand-
off, as depicted by the left side of Figure 4. In this case,
it is unclear which one of the input events resulted in the
handoff. To prevent this ambiguous case, we leverage
the insight that input events are relatively infrequent,
processed much more quickly than users can generate
them, and have a higher priority than other processing.
We observe that the time between distinct input events
is much larger than the time needed to produce the op-
eration request corresponding to the first input event. If
every input event results in an operation request before
the user can even produce another distinct input event,
then there will be only one input event (edge) e from a
source sensor (node) s to program (node) pi, which re-
ceived such input event. Therefore, there will be no am-
biguous input event for program pi. Thus, we propose
to set a time limit for each input event, such that the
difference between the time t0 at which an input event e
is generated and the time t j for any sensor operation re-
quest r – based on that input event – must be below that
limit for the event to be processed. Note that, once an
input event is authorized (Section 4.3), repeated input
events (e.g., pressing down a button multiple times) are
not delayed. Indeed, repeated input events are expected
to generate the same delegation path. Should the pro-
grams produce a different delegation path - in the mid-
dle of a sequence of operations spawned in this manner
- then EnTrust would require a new authorization for
the new delegation path, as described in Section 4.3.

Second, ambiguity is also possible if the same program
p j receives multiple handoff events before performing a
sensor operation request, as depicted by the right side

Figure 5: A program pk attempts leveraging the input event
received from program pi to get program p j to generate an
operation request.

of Figure 4. Note that, handoff events may not be re-
lated to input events (e.g., intents not derived from in-
put events). In this case, it is unclear which handoff is
associated with a subsequent sensor operation request.
Ambiguity prevention for handoff events is more subtle,
but builds on the approach used to prevent ambigu-
ity for input events. Figure 5 shows the key challenge.
Suppose a malicious program pk tries to “steal” a user
authorization for a program p j to perform a sensor op-
eration by submitting a handoff event that will be pro-
cessed concurrently to the handoff event from another
program pi, which received an input event. Should a
sensor operation request occur, EnTrust cannot deter-
mine whether the sensor operation request from p j was
generated in response to the event handoff h1 or to the
event handoff h2. So EnTrust cannot determine the del-
egation path unambiguously to authorize the operation
request. If EnTrust knows the mapping between ac-
tions associated to handoff events and whether they are
linked to sensor operations, EnTrust can block a hand-
off from pk that states an action that requires an input
event. EnTrust knows this mapping for system services,
by having visibility of all inter-procedural calls for pro-
grams part of the operating system; however, EnTrust
may not know such mapping for third-party apps whose
inter-procedural control flow is not mediated to favor
backward compatibility with existing apps.

Thus, we extend the defense for input events to pre-
vent ambiguity as follows: once the target program has
begun processing a handoff associated with an input
event, EnTrust delays the delivery of subsequent hand-
off events until this processing completes or until the
assigned time limit ends. Conceptually, this approach
is analogous to placing a readers-writers lock [44] over
programs that may receive handoffs that result from in-
put events. Note that, the use of time limits ensures no
deadlock since it ensures preemption. To avoid starving
input events (e.g., delaying them until the time limit),
we prioritize delivery of handoffs that derive from in-
put events ahead of other handoffs using a simple, two-
level scheduling approach. We assess the impact of the
proposed ambiguity prevention mechanisms on existing
programs’ functionality and performance in Section 7.

4.3 Authorizing Delegation Paths
For controlling when a sensor operation may be per-
formed as the result of an input event, users are in the
best position to judge the intent of their actions. This is

572 28th USENIX Security Symposium USENIX Association

inline with prior work advocating that it is highly desir-
able to put the user in context when making permission
granting decisions at runtime [16, 33, 17]. Therefore,
users must be the parties to make the final authoriza-
tion decisions. To achieve this objective, EnTrust elicits
an explicit user authorization every time that a new del-
egation path is constructed (step 5 in Figure 2). Hence,
to express a delegation path comprehensively, EnTrust
builds an authorization request that specifies that dele-
gation path to the user. Prior work presented users with
information about the Graphical User Interface (GUI)
used to elicit the input event, including GUI compo-
nents [9, 10, 11], user interface workflows [13], and Ap-
plication Programming Interface (API) calls made by
applications [11, 16]. EnTrust, instead, presents the
delegation path that led to the sensor operation, which
includes the GUI context (c in the input event) and the
handoffs and sensor operations. As a result, EnTrust
ensures that all the programs receiving sensor data are
clearly identified and reported in the authorization re-
quest presented to the user, along with the input event,
handoff events, and the resulting sensor operation.

To reduce users’ authorization effort, EnTrust caches
authorized delegation paths for reuse. After storing an
authorized delegation path, EnTrust proceeds in allow-
ing the authorized sensor operation. For subsequent
instances of the same input event that results in exactly
the same delegation path, EnTrust omits step 5 and
automatically authorizes the sensor operation by lever-
aging the cached authorization. Note that, EnTrust
requires an explicit user’s authorization only the first
time a delegation path is constructed for a specific in-
put event, similarly to the first-use permission approach.
As long as the program receiving an input event does
not change the way it processes that event (i.e., same
handoffs and operation request), no further user autho-
rization will be necessary. In Section 6.2, we show that
such an approach does not prohibitively increase the
number of access control decisions that users have to
make, thus avoiding decision fatigue [45].

Further, EnTrust evicts cached authorizations in two
scenarios. First, if a new delegation path is identified
for an input event that already has a cached delegation
path, then EnTrust evicts the cached authorization and
requires a new user authorization for the newly con-
structed delegation path, before associating it to such
an input event and caching it. Second, users can lever-
age an audit mechanism, similar to proposals in related
work [11, 15], to review previous authorizations and
correct them if needed. Denied authorizations are also
logged for two reasons. First, they allow users to have
a complete view of their past decisions; but more im-
portantly, they allow EnTrust to prevent malicious pro-
grams from annoying users by generating authorization
requests over a give threshold, for operations already
denied by the user in the past. Also, users may set
the lifetime of cached authorizations, after which they

Figure 6: Authorization requests prompted to users by
EnTrust upon delegation paths creation. Screenshots show-
ing benign (left) and attack (right) scenarios by the Basic
Camera app.

are evicted. We discuss utilizing such logs for revoking
mistaken authorizations and denials in Section 8.

5 Implementation
We implemented a prototype of the EnTrust authoriza-
tion system by modifying a recent release of the An-
droid OS (Android-7.1.1_r3) available via the Android
Open Source Project (AOSP).4 The choice of imple-
menting the EnTrust prototype for the Android OS was
guided by its open-source nature and its wide adoption.
EnTrust’s footprint is 170 SLOC in C for the Linux
kernel (bullhead 3.10), plus 380 SLOC in C, 830 SLOC
in C++, and 770 SLOC in Java for components in the
Android OS.

In this section, we provide the implementation details
for event scheduling and authorization management. In
Appendices C-F, we provide further implementation de-
tails regarding event authentication and mediation.

In Android, the Event Hub (part of the Input Man-
ager server) reads raw input events from the input de-
vice driver files (/dev/input/*) and delivers them to
the Input Reader. The Input Reader then formats the
raw data and creates input event data that is delivered
to the Input Dispatcher. The Input Dispatcher then
consults the Window Manager to identify the target
program based on the activity window currently dis-
played on the screen. Hence, we enhanced the Input
Dispatcher to hold - for the duration of a time window
- incoming input events for a target program should
there be already a delivered input event for such a pro-
gram that has not been processed, yet. For handoff
events, instead, the Binder is the single point of media-
tion for inter-process communication (IPC) between iso-
lated programs. It has the knowledge of all the pending
messages exchanged as well as knowledge of the identity

USENIX Association 28th USENIX Security Symposium 573

of the two communicating parties. Hence, we also en-
hanced the Binder to hold - for the duration of a time
window - incoming handoff events for a target program
should the program be already involved in another com-
munication with a third program.

EnTrust prompts users with authorization messages
for explicit authorizations of delegation paths, as shown
in Figure 6. Users are made aware of all the programs
cooperating in serving their requests as well as of the
entire delegation path. Also, users are prompted with
programs’ names and identity marks to ease their iden-
tification. EnTrust crosschecks developers’ signatures
and apps’ identity (i.e., names and logos) by pulling in-
formation from the official Google Play Store to prevent
identity spoofing. Also, EnTrust prevents programs
from creating windows that overlap the authorization
messages by leveraging the Android screen overlay pro-
tection mechanism. Finally, EnTrust prevents unautho-
rized modification of authorization messages by other
programs by using isolated per-window processes forked
from the Window Manager to implement a Compart-
mented Mode Workstation model [48].

6 EnTrust Evaluation
We investigated the following research questions:

I To what degree is the EnTrust authorization assist-
ing users in avoiding confused deputy, Trojan horse, and
man-in-the-middle attacks? We performed a laboratory
study and found that EnTrust significantly increased
(from 47-67% improvement) the ability of participants
in avoiding attacks.

I What is the decision overhead imposed by EnTrust
on users due to explicit authorization of constructed
delegation graphs? We performed a field study and
found that the number of decisions imposed on users
by EnTrust remained confined - in worst case scenarios
- to no more than 4 explicit authorizations per program.

I Is EnTrust backward compatible with existing pro-
grams? How many operations from legitimate programs
are incorrectly blocked by EnTrust? We used a well-
known compatibility test suite to evaluate the compat-
ibility of EnTrust with 1,000 apps (selected among the
most popular apps on Google Play Store) and found
that EnTrust does not cause the failure of any program.

I What is the performance overhead imposed by
EnTrust for delegation graph construction and enforce-
ment? We used a well-known software exerciser to mea-
sure the performance overhead imposed by EnTrust.
We found that EnTrust introduced a negligible overhead
(order of milliseconds) unlikely noticeable to users.

6.1 Study Preliminaries
We designed our user studies following suggested prac-
tices for human subject studies in security to avoid com-
mon pitfalls in conducting and writing about security
and privacy human subject research [49]. An Institu-

tional Review Board (IRB) approval was obtained from
our institution. The data collected did not contain Per-
sonally Identifiable Information (PII) and was securely
stored and accessible only to authorized researchers.
We recruited study participants via local mailing lists,
Craigslist, Twitter, and local groups on Facebook. We
compensated them with a $5 gift card. We excluded
acquaintances from participating in the studies to avoid
acquiescence bias. Before starting the study, partici-
pants had to sign our consent form and complete an en-
try survey containing demographic questions. We made
sure to get a wide diversity of subjects, both in terms
of age and experience with technology (details available
in Appendix A). For all the experiments, we configured
the test environment on LG Google Nexus 5X phones
running the Android 7.1 Nougat OS. We used a back-
ground service, automatically relaunched at boot time,
to log participants’ responses to system messages and
alerts, input events generated by participants while in-
teracting with the testing programs, as well as system
events and inter-process communications between pro-
grams. Furthermore, during the experiments, the re-
searchers took note of comments made by participants
to ease the analysis of user decision making.

6.2 Laboratory Study
We performed a laboratory study to evaluate the ef-
fectiveness of EnTrust in supporting users in avoid-
ing all the three attack vectors previously identified
in Section 2. We compared EnTrust with the first-
use authorization used in commercial systems. We
could not compare mechanisms proposed in related
work [9, 10], because they are unable to handle handoff
events. We divided participants into four groups, partic-
ipants in Group-FR-U and Group-FR-P interacted with
a stock Android OS implementing the first-use autho-
rization mechanism. Participants in Group-EN-U and
Group-EN-P interacted with a modified version of the
Android OS integrating the EnTrust authorization sys-
tem. To account for the priming effect, we avoided in-
fluencing subjects in Group-FR-U and Group-EN-U and
advertised the test as a generic “voice assistants testing”
study without mentioning security implications. On the
other hand, to assess the impact of priming, subjects
in Group-FR-P and Group-EN-P were informed that at-
tacks targeting sensors (e.g., camera, microphone, and
GPS receiver) were possible during the interaction with
programs involved in the experimental tasks, but with-
out specifying what program performed the attacks or
what attacks were performed.

Experimental Procedures: For our experiment, we
used a test assistant developed in our research lab called
Smart Assistant, which provides basic virtual assistant
functionality, such as voice search, message composi-
tion, and note keeping. However, Smart Assistant is
also designed to perform confused deputy attacks on

574 28th USENIX Security Symposium USENIX Association

Directive Attack Scenario First-Use (FR) EnTrust (EN)
T
A
S
K
A

Ask Smart
Assistant
to “create a
note.”
Dictate a
voice note
to Notes.
For
example,
“remind me
to buy milk
on the way
home.”

Confused Deputy: Smart
Assistant opens the Notes
app and adds the specified
note, however, it also
requests the Screen
Capture service to capture
the content on the screen.
Credit card information and
passwords, visible in the
notes summary, are
captured and sent to a
remote server controlled by
the adversary.

Group-FR-U Group-FR-P
87% Attack Success 53% Attack Success
40% Prompted 47% Prompted
27% Explicit Allows 0% Explicit Allows

Group-EN-U Group-EN-P
20% Attack Success 0% Attack Success
100% Prompted 100% Prompted
20% Explicit Allows 0% Explicit Allows

T
A
S
K
B

Ask
Google
Assistant
to “take a
selfie.”

Trojan Horse: Google
Assistant activates the
Basic Camera app, which
is a Trojan app that takes a
selfie but also records a
short audio and the user’s
location. The collected data
is then sent to a remote
server controlled by the
adversary.

Group-FR-U Group-FR-P
80% Attack Success 47% Attack Success
40% Prompted 53% Prompted
20% Explicit Allows 0% Explicit Allows

Group-EN-U Group-EN-P
13% Attack Success 0% Attack Success
100% Prompted 100% Prompted
13% Explicit Allows 0% Explicit Allows

T
A
S
K
C

Ask
Google
Assistant
to “deposit
bank check.”
After
logging into
Mobile
Banking
with the
provided
credentials,
deposit the
provided
check.

Man-In-The-Middle:
Google Assistant launches
Basic Camera registered
for the voice intent “deposit
bank check”. The Basic
Camera runs in the
background, captures a
picture of the check and -
via a spoofed intent -
launches the Mobile
Banking app registered for
the voice intent “deposit
check.” The collected data
is sent to a remote server
controlled by the adversary.

Group-FR-U Group-FR-P
67% Attack Success 53% Attack Success
47% Prompted 47% Prompted
13% Explicit Allows 0% Explicit Allows

Group-EN-U Group-EN-P
7% Attack Success 0% Attack Success
100% Prompted 100% Prompted
7% Explicit Allows 0% Explicit Allows

Table 1: Experimental tasks for the laboratory study, derived from the attack vectors described in Section 2. We report the
authorization messages shown to subjects in the four groups as well as the delegation graphs used by EnTrust to construct such
authorization messages. In the group names, the suffix U indicates unprimed subjects, whereas P indicates primed subjects.
Notice that, authorization requests prompted by EnTrust include programs’ identity marks (i.e., apps’ icon and unique id).

system services, such as the Screen Capture service.
We also used a test app, Basic Camera, developed in
our research lab. It provides basic camera functionality,
such as capturing pictures or videos and applying photo-
graphic filters. However, Basic Camera is also designed
to perform man-in-the-middle and Trojan horse attacks
for requests to capture photographic frames. Lastly, we
used a legitimate Mobile Banking app, from a major in-
ternational bank, available on Google Play Store. Apart
from the testing apps and voice assistant, the smart-
phone provided to participants had pre-installed both
the Google Assistant and the Android Camera app.

Our laboratory study was divided into two phases.
A preliminary phase during which no attacks were per-
formed. This phase enabled participants to familiar-
ize themselves with the provided smartphone, the pre-
installed apps and the voice assistants. This phase
avoided a “cold start” and approximated a more real-
istic scenario in which users have some experience us-
ing relevant apps and voice assistants. Furthermore,
this preliminary phase enabled capturing how malicious

programs may leverage pre-authorized operations in the
first-use approach to then perform operations not ex-
pected by the users; a malicious behavior that is in-
stead prevented by EnTrust via the construction of per-
delegation authorizations. The preliminary phase was
then followed by an attack phase, during which par-
ticipants interacted with programs performing attacks.
Participants were not made aware of the existence of the
two experimental phases nor of the difference between
the two phases.

All instructions regarding experimental tasks to be
performed were provided to participants in writing via
a handout at the beginning of each experimental task.
During the preliminary phase the participants per-
formed the following three tasks: (1) asked a voice as-
sistant to “take a screenshot;” (2) asked a voice assis-
tant to “record a memo;” and (3) used a camera app
to “record a video.” During the attack phase, instead,
the participants performed the three tasks described in
Table 1. In each phase, each participant was presented
with a different randomized order of the above tasks.

USENIX Association 28th USENIX Security Symposium 575

Experimental Results: In total, 60 subjects partici-
pated in and completed our laboratory study. We ran-
domly assigned 15 participants to each group. In this
study, we did not observe denials of legitimate operations
for sensitive sensors for non-attack tasks performed dur-
ing the preliminary phase, but we discuss the need for
more study on preventing and resolving mistaken de-
nials in Section 8. Table 1 summarizes the results of the
three experimental tasks for the attack phase. Our focus
was to study the effectiveness of EnTrust in reducing the
success rate of attacks when compared to the first-use
approach. During the preliminary phase and the exper-
imental tasks, all the participants were prompted with
the corresponding authorization messages depending on
the group to which they were assigned,5 as reported in
Table 1. Prompted authorizations included legitimate
operations, see left side of Figure 6 for an example of
what a prompt for a legitimate operation looked like.
Our analysis reports that each participant of each group
was prompted at least 4 times for non-attack opera-
tions. Note that, as per definition of first-use autho-
rization, participants in Group-FR-U and Group-FR-P
were not prompted with authorization messages once
again should they have already authorized the program
in a previous task or during the preliminary phase. In-
stead, participants in Group-EN-U and participants in
Group-EN-P were presented with a new authorization
message any time a new delegation path was identified
by EnTrust. This explains the lower percentage of sub-
jects prompted, with an authorization request, in the
first-use groups.

TASK A : The analysis of subjects’ responses revealed
that 9 subjects from Group-FR-U and 8 subjects from
Group-FR-P interacted with Smart Assistant during the
preliminary phase, or during another task, to “take a
screenshot” and granted the app permission to capture
their screen; thus, they were not prompted once again
with an authorization message during this task, as per
default in first-use permissions. In addition, 4 subjects
from Group-FR-U explicitly allowed Smart Assistant to
capture their screen, therefore, resulting in a 87% and
53% attack success, respectively, as reported in Table 1.
On the contrary, only 3 subjects from Group-EN-U and
no subject from Group-EN-P allowed the attack (20%
and 0% attack success, respectively). Also, similarly to
what happened in Group-FR-U and Group-FR-P, 8 sub-
jects from Group-EN-U and 8 subjects from Group-EN-P
interacted with Smart Assistant during the preliminary
phase and asked to “take a screenshot.” However, since
the voice command “create a note” was a different com-
mand, EnTrust prompted all subjects with a new au-
thorization message, as shown in Table 1.

TASK B : The analysis of subjects’ responses revealed
that 9 subjects from Group-FR-U and 7 subjects from
Group-FR-P interacted with Basic Camera to take a pic-
ture or record a video, either during the preliminary
phase or during another task, and authorized it to cap-

ture pictures, audio, and access the device’s location.
Thus, they were not prompted once again during this
task as per default in first-use permissions. Also, we
found that 3 subjects from Group-FR-U explicitly au-
thorized Basic Camera to access the camera, as well as
the microphone, and the GPS receiver; therefore, re-
sulting in 80% and 47% attack success, respectively. In
contrast, 2 subjects from Group-EN-U and no subject
from Group-EN-P authorized access to the camera, mi-
crophone, and GPS receiver (13% and 0% attack suc-
cess, respectively). Also, we found that 8 subjects from
Group-EN-U and 6 subjects from Group-EN-P interacted
with Basic Camera during the preliminary phase or
during another task. However, none of them asked to
“take a selfie” before, so all subjects were prompted by
EnTrust with a new authorization message. At the end
of the experiment, among all the subjects, when asked
why they authorized access to the GPS receiver, the ma-
jority said that they expected a camera app to access
location to create geo-tag metadata when taking a pic-
ture. In contrast, the subjects who denied access stated
not feeling comfortable sharing their location when tak-
ing a selfie.

TASK C : The analysis of subjects’ responses revealed
that 8 subjects from Group-FR-U and 8 subjects from
Group-FR-P interacted with Basic Camera, either dur-
ing the preliminary phase or during another task, and
authorized the app to capture pictures. Thus, during
this task, they were not prompted with an authorization
message once again as per default in first-use permis-
sions. They were only prompted to grant permission to
Mobile Banking, explaining why even the primed sub-
jects were not able to detect the attack. In addition,
2 subjects from Group-FR-U explicitly authorized Ba-
sic Camera to capture a frame with the bank check;
therefore, resulting in 67% and 53% attack success, re-
spectively. On the other hand, only 1 subject from
Group-EN-U and no subject from Group-EN-P autho-
rized Basic Camera to capture a frame with the bank
check, resulting in a 7% and 0% attack success, re-
spectively. Notice that all subjects from Group-EN-U
and Group-EN-P were prompted with a new authoriza-
tion message by EnTrust for the new command “de-
posit bank check.” Interestingly, the one subject from
Group-EN-U, who allowed Basic Camera to capture a
frame with the bank check, verbally expressed his con-
cern about the permission notification presented on the
screen. The subject stated observing that two apps
asked permission to access the camera to take pictures.
This is reasonable for an unprimed subject not expect-
ing a malicious behavior.

Discussion: Comparing the results from Group-FR-U
versus those from Group-FR-P, and those from
Group-EN-U versus those from Group-EN-P, we observe
- as expected - that primed subjects allowed fewer at-
tacks. We find that users primed for security problems
still fall victim to attacks due to first-use authorization,

576 28th USENIX Security Symposium USENIX Association

even when rejecting all the malicious operations they
see. On the other hand, unprimed users fail to detect
attacks between 7-20% with EnTrust. So while this is a
marked improvement, over the 67-87% failure for users
with first-use authorization, there is room for further
improvement. However, it is apparent that the dele-
gation graphs constructed by EnTrust aided the sub-
jects in avoiding attacks even when unprimed. EnTrust
performed slightly better than first-use authorization in
terms of explicit authorizations (explicit allows in Ta-
ble 1); which suggests that the additional information
provided by EnTrust in authorization messages (i.e.,
programs’ name and identity mark as well as delega-
tion information, as shown in Figure 6) may be help-
ful to users in avoiding unexpected program behav-
iors. We verified the hypothesis that the information
in EnTrust authorizations helps unprimed users iden-
tify attacks by calculating the difference in explicit al-
lows, across the three experimental tasks, for subjects in
Group-FR-U versus subjects in Group-EN-U. Our anal-
ysis indeed revealed a statistically significant difference
(χ2 = 19.3966; p = 0.000011).

Also, EnTrust was significantly more effective than
first-use in keeping users “on guard” independently of
whether subjects were primed (47-67% lower attack suc-
cess with EnTrust). Indeed, different from the first-
use approach, EnTrust was able to highlight whether
pre-authorized programs attempted accessing sensors
via unauthorized delegation paths. If so, EnTrust
prompted users for an explicit authorization for the
newly identified delegation path. We verified the hy-
pothesis that EnTrust better helps primed and un-
primed users in preventing attacks than first-use, by cal-
culating the difference in successful attacks, across the
three experimental tasks, for subjects in Group-FR-U
and Group-FR-P, versus subjects in Group-EN-U and
Group-EN-P. Our analysis indeed revealed a statistically
significant difference (χ2 = 65.5603; p = 0.00001). Nor-
mally, the standard Bonferroni correction would be ap-
plied for multiple testing, but due to the small p-values
such a correction was not necessary.

6.3 Field Study
We performed a field study to evaluate whether EnTrust
increases the decision-overhead imposed on users. We
measured the number of explicit authorizations users
had to make when interacting with EnTrust under re-
alistic and practical conditions, and compared it with
the first-use approach adopted in commercial systems
(i.e., Android OS and Apple iOS). We also measured the
number of authorizations handled by EnTrust via the
cache mechanism that, transparently to users, granted
authorized operations.

Experimental Procedures: Participants met with one
of our researchers to set up the loaner device, an LG
Nexus 5X smartphone running a modified version of
the Android OS integrating the EnTrust authorization

framework. The loaner device had pre-installed 5 voice
assistants and 10 apps selected among the most pop-
ular6 with up to millions of downloads from the offi-
cial Google Play store. For such programs, to ensure
the confidentiality of participants’ personal information,
mock accounts were set up instead of real accounts for
all apps requiring a log-in. To facilitate daily use of the
loaner device, the researcher transferred participants’
SIM cards and data, as well as participants’ apps in the
loaner device, however no data was collected from such
apps. The above protocol was a requirement for the IRB
approval by our Institution and it is compliant with the
protocol followed in related work [33, 15, 11]. Before
loaning the device, the researcher asked each partici-
pant to use the loaner device for their everyday tasks
for a period of 7 days. In addition to their everyday
tasks, participants were asked to explore each of the pre-
installed voice assistants and apps, at least once a day,
by interacting as they would normally do. Particularly,
we asked the participants to interact with each voice as-
sistant by asking the following three questions: (1) “cap-
ture a screenshot,” (2) “record a voice note,” (3) “how
long does it take to drive back home.” Additionally, we
asked participants to be creative and ask three addi-
tional questions of their choice. Table 2 summarizes all
the assistants and apps pre-installed on the smartphones
for the field study. Because the mere purpose of our field
study was to measure the decision-overhead imposed to
users by EnTrust and to avoid participants’ bias, the
researcher advertised the study as a generic “voice as-
sistants and apps testing” study without mentioning
security implications or training the users about the
features provided by EnTrust. The smartphones pro-
vided to participants were running a background service
with runtime logging enabled, automatically restarted
at boot time, to monitor the number of times each pro-
gram was launched, the users’ input events, the con-
structed delegation graphs, the authorization decisions
made by the participants, and the number of autho-
rizations automatically granted by EnTrust. The back-
ground service also measured the gaps between consecu-
tive input events and handoff events, as well as the time
required by each program to service each event. This
data was used to perform the time constraints analysis
reported in Appendix B.

Experimental Results: Nine subjects participated and
completed the field study. The data collected during our
experiment indicates that all user authorizations were
obtained within the first 72 hours of interaction with
the experimental device, after which we observed only
operations automatically granted by EnTrust via the
caching mechanism.

The first subject allowed us to discover two imple-
mentation issues that affected the number of explicit
authorizations required by EnTrust. First, changing the
orientation of the screen (portrait versus landscape) was
causing EnTrust to request a new explicit user autho-

USENIX Association 28th USENIX Security Symposium 577

Expl. Authorizations
First-Use EnTrust

Impl. Authorizations
in s 7 Days Period

Snapchat
YouTube
Facebook Messenger
Instagram
Facebook
Whatsapp
Skype
WeChat
Reddit
Bitmoji

3
3
2
3
3
2
3
2
1
3

3
3
2
3
3
2
3
2
1
3

276
84
93

393
117
76

100
101
18

127
Google Assistant
Microsoft Cortana
Amazon Alexa
Samsung Bixby
Lyra Virtual Assistant

1
1
1
1
1

4
3
4
4
3

72
49
84
63
56

Table 2: Apps and voice assistants tested in the field study.
The last column shows the number of operations automati-
cally authorized by EnTrust after user’s authorization.

rization for an already authorized widget whenever the
screen orientation changed. This inconvenience was due
to the change in some of the features used to model the
context within which the widget was presented. To ad-
dress this shortcoming, we modified our original pro-
totype to force the Window Manager to generate in
memory two graphical user interfaces for both screen
orientations to allow EnTrust to bind them with a spe-
cific widget presented on the screen. Second, for the
voice commands, we noticed that differently phrased
voice commands with the same meaning would be iden-
tified as different input events. For instance, “take
a selfie” and “take a picture of me”. This shortcom-
ing was causing EnTrust to generate a new delegation
graph for each differently phrased voice command. To
address this issue, we leveraged the Dialogflow engine
by Google, part of the AI.API.7 Dialogflow is a devel-
opment suite for building conversational interfaces and
provides a database of synonyms to group together voice
commands with the same meaning. We fixed the issues
and continued our experiment with other subjects.

Table 2 reports the average number of explicit autho-
rizations performed by the subjects. We compared them
with the number of explicit authorizations that would
be necessary if the first-use permission mechanism was
used instead. The results show that EnTrust required
the same number of explicit authorizations by users for
all the tested apps. For all voice assistants, instead,
EnTrust may require up to 3 additional explicit autho-
rizations, when compared with the first-use approach;
which is far below the 8 additional explicit authoriza-
tions used in prior work, which are considered likely not
to introduce significant risk of habituation or annoy-
ance [33]. These additional authorizations are due to
the fact that with the first-use approach the programs
(activated by the voice assistant to serve the user re-
quest) may have already received the required permis-
sions to access the sensitive sensors. EnTrust instead
captures the entire sequence of events, from the input
event to any subsequent action or operation request, and
then ties them together. Therefore, EnTrust constructs
a new graph for each novel interaction. Nonetheless,

the number of decisions imposed on the users remains
very modest. Indeed, on average, three additional ex-
plicit user authorizations are required per voice assis-
tant. Also, the number of explicit authorizations made
by the users remained a constant factor compared to the
number of operations implicitly authorized by EnTrust,
which instead grew linearly over time. We measured
an average of 16 operations implicitly authorized by
EnTrust during a 24-hour period (last column of Ta-
ble 2). Therefore, if we consider such a daily average
number of implicitly authorized operations for a period
of one year, we will have on the order of thousands of
operations automatically authorized by EnTrust, which
would not require additional explicit effort for the users.

6.4 Backward Compatibility Analysis
To verify that EnTrust is backward compatible with ex-
isting programs, we used the Compatibility Test Suite
(CTS),8 an automated testing tool released by Google
via the AOSP.9 In particular, this analysis verified that
possible delays in the delivery of events introduced by
EnTrust or the change in scheduling of events did not
impact applications’ functionality. We tested the com-
patibility of EnTrust with 1,000 existing apps, among
the top 2,000 most downloaded apps on Google Play
Store, selected based on those declaring permissions to
access sensitive sensors in their manifest. The experi-
ment took 19 hours and 45 minutes to complete, and
EnTrust passed 132,681 tests without crashing the op-
erating system and without incorrectly blocking any
legitimate operation. Among the 1,000 tested apps,
we also included 5 popular augmented reality multi-
player gaming app (InGress, Pokémon Go, Parallel
Kingdom, Run An Empire, and Father.io), which typi-
cally have a high rate of input events and are very sensi-
tive to delays. The set of tests targeting these 5 gaming
apps ran for 16 minutes, during which we continuously
observed the device screen to identify possible issues in
terms of responsiveness to input events or glitches in
the rendering of virtual objects on the screen. However,
we did not identify any discernible slowdown, glitch, or
responsiveness issue.

7 Performance Measurements
We performed four micro-benchmarks on a standard
Android developer smartphone, the LG Nexus 5X, pow-
ered by 1.8GHz hexa-core 64-bit Qualcomm Snapdragon
808 Processor and Adreno 418 GPU, 2GB of RAM, and
16GB of internal storage. All of our benchmarks are
measured using Android 7.1 Nougat pulled from the An-
droid Open Source Project (AOSP) repository.

Delegation Graph Construction – Our first
micro-benchmark of EnTrust measured the overhead
incurred for constructing delegation graphs of varying
sizes. To do this, we had several programs interacting

578 28th USENIX Security Symposium USENIX Association

Figure 7: Overheads for Delegation Graphs Construction, Storage, Eviction, and Enforcement.

and generating a handoff-events chain varying from 1 to
10 handoffs in length and measured the time to mediate
the input event, the handoff event, and the operation re-
quest. We repeated the measurements 100 times. Each
set of measurements was preceded by a priming run to
remove any first-run effects. We then took an average
of the middle 8 out of 10 such runs for each number
of handoff events. The results in Figure 7 show that
the input mediation requires an overhead of 10 µs, the
handoff event mediation requires an additional overhead
of 4 µs per event handoff, whereas the operation medi-
ation requires a fixed overhead of 5 µs. The overheads
are within our expectations and do not cause noticeable
performance degradation.

Delegation Graph Caching – Our second micro-
benchmark of EnTrust measures the overhead incurred
for caching delegation graphs constructed at runtime.
We measured the overhead introduced by EnTrust in
the authorization process for both storing a new dele-
gation graph, as well as evicting from cache a stale one.
To do this, we simulated the creation and eviction of
delegation graphs of different sizes varying from 1 to 16
Kilobytes in 512-byte increments.10 We repeated the
measurement 5 times for each random size and took an
average of the middle 3 out of 5 such runs. The results
in Figure 7 show that the storing of delegation graphs
in the cache required a base overhead of 66 µs with an
additional 3 µs per 512-byte increment. The eviction
instead required a base overhead of 57 µs with an addi-
tional 2.5 µs for each 512-byte increment.

Delegation Graph Enforcement – Our third
micro-benchmark was designed to compare the unmod-
ified version of the Android Nougat build for control
measurement with a modified build integrating our
EnTrust features for the delegation graph enforcement
during authorization. To guarantee fairness in the com-
parison between the two systems, we used the An-
droid UI/Application Exerciser Monkey11 to generate
the same sequence of events for the same set of pro-
grams. For both systems, we measured the total time
needed to authorize a sensor operation as the time from
the input event to the authorization of the resulting op-
eration request, corresponding to the last node of the
delegation graph for EnTrust. We repeated the mea-
surement 100 times for each system by varying the num-

ber of handoff events from 1 to 10. Each set of measure-
ments was preceded by a priming run to remove any
first-run effects. We then took an average of the mid-
dle 8 out of 10 such runs for each number of handoff
events. Figure 7 shows that the overhead introduced by
EnTrust for the delegation graph enforcement is negli-
gible, with the highest overhead observed being below
0.02%. Thus, the slowdown is likely not to be noticeable
by users. Indeed, none of our study participants raised
any concerns about discernible performance degrada-
tion or system slowdown.

Ambiguity Prevention – Our fourth micro-
benchmark was designed to measure the performance
implications, in terms of delayed events, due to the
ambiguity prevention mechanism. For this micro-
benchmark, we selected the system UI (User Interface)
process, which is one of the processes receiving the high-
est number of input events, and the media server process
that receives the highest number of handoff events and
performs sensor operations with higher frequency than
any other process. The time window for the construc-
tion of each delegation path was set to 150 ms. We
generated 15,000 input events with gaps randomly se-
lected in the range [140-1,500]12 ms. The time window
and the gaps were selected based on data reported in
Appendix B. The generated input events caused 2,037
handoff events and 5,252 operation requests targeting
sensors (22,289 total scheduled events). The results in-
dicated a total of 256 delayed events (1.15% of the total
events), with a maximum recorded delay of 9 ms. Thus,
the performance overhead introduced is negligible.

Memory Requirement – We also recorded the av-
erage cache size required by EnTrust to store both event
mappings and authorized delegation graphs to be about
5.5 megabytes, for up to 1,000 programs.13 Therefore,
EnTrust required about 5.5 kilobytes of memory per
program, which is a small amount of memory when com-
pared to several gigabytes of storage available in modern
systems. We ran the measurement 10 times and then
took an average of the middle 8 out of 10 of such runs.

8 Discussion of Limitations

Evaluating mechanisms that prevent abuse of sensitive
sensors while trading off privacy and usability is chal-

USENIX Association 28th USENIX Security Symposium 579

lenging. In this section, we discuss the limitations of
our study and provide guidance on future work.

Authorization Comprehension – In designing our
authorization messages, we have used the language
adopted in current permission systems (e.g., Android
OS and Apple iOS) and prior research work [47, 11,
15, 16] as references. However, such language may not
be as effective in eliciting access control decisions from
users as desired. Further improvements may be possi-
ble by studying NLP techniques and how access control
questions may be phrased using such techniques. Also,
a combination of text, sound, and visuals may be use-
ful in conveying access questions to users. EnTrust is
largely orthogonal to any specific way how access con-
trol questions are presented, enabling it to be used as a
platform for further study.

Decision Revocation – Users may make mistakes
when allowing or denying authorizations. EnTrust
caches user decisions to reduce users’ authorization ef-
fort, allowing such mistakes to persist. Mistakes in au-
thorizing access to sensor operations may permit ma-
licious applications to abuse access, albeit limited to
that delegation path only. Mistakes in denying access
to sensor operations prevents legitimate use of sensor
operations silently as a result of caching. One possible
solution to these problems is to invalidate the cache peri-
odically to prevent stale authorization decisions. How-
ever, frequent authorization prompts negatively affect
user experience. Currently, EnTrust enables users to
review authorization decisions via an audit mechanism,
as suggested elsewhere [53, 15]. However, to improve
the effectiveness of such mechanisms, further laboratory
studies will be necessary to examine how to present au-
dit results (or other new approaches) to help users to
investigate and resolve mistaken authorizations.

Study Scenarios – In this project, we focused on
whether users would be able to deny attack scenarios
effectively. Another problem is that users may not eval-
uate non-attack scenarios correctly once they become
aware of possible attacks. In our study, we did not ob-
serve that users denied any legitimate sensor operations
during the lab study, but it would be beneficial to ex-
tend the laboratory study to include more subtle non-
attack scenarios, where we push the boundaries of what
is perceived as benign, to evaluate whether these sce-
narios may cause false denials due to users being unable
to identify that the request was indeed benign. Also, we
recognize that all attacks were generated by programs
unfamiliar to participants, even though they were given
the opportunity to familiarize themselves with such pro-
grams during the preliminary phase of our lab study.

Study Size – The number of subjects recruited for
this project, 60 for the laboratory study and 9 for the
field study, is comparable with the number of subjects
in similar studies [33, 14, 15, 11]. Other related work
[47] had a higher number of subjects, but subjects were
not required to be physically present in the laboratory

during the experimental tasks having been recruited via
online tools (e.g., Mechanical Turk). However, research
has shown, in the context of password study, that a lab-
oratory study may produce more realistic results than
an online study [58].

Study Comprehensiveness – Our study does not
focus explicitly on long-term habituation, user annoy-
ance, and users’ attitudes toward privacy. Researchers
have already extensively studied users’ general level of
privacy concerns [51, 52, 53, 15]. Other researchers
have studied users’ habituation for first-use authoriza-
tion systems extensively [33, 45, 50]. Our field study
(Section 6.3) shows that our approach is comparable
to first-use in terms of the number of times users are
prompted, and the number of explicit authorizations
from users is far below the 8 additional explicit autho-
rizations used in prior work, which are considered likely
not to introduce significant risk of habituation or an-
noyance [33].

9 Related Work
Researchers have extensively demonstrated that IPC
mechanisms allow dangerous interactions between pro-
grams, such as unauthorized use of intents, where ad-
versaries can hijack activities and services by stealing
intents [18, 21, 22, 26]. Prior work has also shown
that such interactions can be exploited by adversaries
to cause permission re-delegations [7] in the attempt to
leverage capabilities available to trusted programs (e.g.,
system services). Also, related work has demonstrated
how trusted programs inadvertently or purposely (for
functionality reasons) expose their interfaces to other
programs [8], thus exposing attack vectors to adver-
saries. In this paper, we have demonstrated that dan-
gerous interactions among programs can lead to critical
attack vectors related to input event delegations.

Researchers have tried to regulate such interactions
with automated tools for IPC-related vulnerability anal-
ysis. For instance, ComDroid is a tool that parses the
disassembled applications’ code to analyze intent cre-
ation and transition for the identification of unautho-
rized intent reception and intent spoofing [26]. Efficient
and Precise ICC discovery (EPICC) is a more compre-
hensive static analysis technique for Inter-Component
Communication (ICC)14 calls [19]. It can identify ICC
vulnerabilities due to intents that may be intercepted
by malicious programs, or scenarios where programs ex-
pose components that can be launched via malicious in-
tents. Secure Application INTeraction (Saint) [54] ex-
tends the existing Android security architecture with
policies that would allow programs to have more con-
trol to whom permissions for accessing their interfaces
are granted and used at runtime. Quire provides context
in the form of provenance to programs communicating
via Inter-Procedure Calls (IPC) [55]. It annotates IPCs
occurring within a system, so that the recipient of an

580 28th USENIX Security Symposium USENIX Association

IPC request can observe the full call sequence associ-
ated with it, before committing to any security-relevant
decision. Although effort has been made to analyze
and prevent IPC-related vulnerabilities, none of the pro-
posed approaches above tackled the problem from our
perspective, i.e., instead of giving control to application
developers, we must give control to users who are the
real target for privacy violations by malicious programs.

In line with our perspective of giving control to users,
User-Driven Access Control [9, 10] proposes the use of
access control gadgets, predefined by the operating sys-
tems and embedded into applications’ code, to limit
what operation can be associated with a specific input
event. Also, AWare [11] proposes to bind each operation
request targeting sensitive sensors to an input event and
to obtain explicit authorization from the user for each
event-operation combination. Similarly, ContexIoT [16]
is a context-based permission system for IoT platforms
which leverages runtime prompts with rich context in-
formation including the program execution flow that al-
lows users to identify how a sensitive operation is trig-
gered. Unfortunately, all of these mechanisms only con-
trol how the input event is consumed by the program
receiving the input event. The proposed mechanisms to
enable mediation do not mediate inter-process commu-
nication and the operations resulting from such com-
munication (e.g., event delegations between programs),
which is necessary to prevent the attack vectors dis-
cussed in this paper. Also, differently from prior work
on permission re-delegation [7], we do not rely on an
over-restrictive defense mechanism that totally forbids
programs from using their additional privileges. Such
an over-restrictive defense would block necessary inter-
actions between programs even when the interactions
are benign and expected by users.

Prior work has also investigated the use of machine
learning classifiers to analyze the contextuality behind
user decisions to automatically grant access to sensors
[14, 15]. Unfortunately, such classifiers only model the
context relative to the single program that the user is
currently interacting with, and the API calls that are
made by such a program during the interaction. How-
ever, the context modeled by these classifiers does not
account for inter-process communications, which allow
programs to enlist other programs to perform sensor op-
erations via input event delegation. Furthermore, the
effectiveness of the learning depends on the accuracy of
the user decisions used in training the learner. In other
words, if the user’s decisions suffer from inadequate in-
formation during the training phase, the learner will as
well. Therefore, we firmly believe that an additional ef-
fort is necessary to support user decision making before
the user decisions can be used to train a classifier.

Lastly, mechanisms based on taint analysis [29, 30, 31]
or Decentralized Information Flow Control (DIFC) [13,
20] have been proposed by researchers to, respectively,
track and control how sensitive data is used by or shared

between programs. However, such mechanisms solve the
orthogonal problem of controlling sensitive data leakage
or accidental disclosure, rather than enabling users to
control how, when, and which programs can access sen-
sors for the collection of sensitive data.

10 Conclusion
While a collaborative model allows the creation of use-
ful, rich, and creative applications, it also introduces
new attack vectors that can be exploited by adversaries.
We have shown that three well-studied attack vectors
become critical, in operating systems supporting a coop-
erating program abstraction, and proposed the EnTrust
authorization system to help mitigate them. EnTrust
demonstrates that it is possible to prevent programs
from abusing the collaborative model – in the attempt
to perform delegated confused deputy, delegated Tro-
jan horse, or delegated man-in-the-middle attacks – by
binding together, input event, handoff events, and sen-
sor operation requests made by programs, and by requir-
ing an explicit user authorization for the constructed
delegation path. Our results show that existing sys-
tems have room for improvement and permission-based
systems, as well as machine learning classifiers, may sig-
nificantly benefit from applying our methodology.

Acknowledgements
Thanks to our shepherd, Sascha Fahl, and the anony-
mous reviewers. The effort described in this article was
partially sponsored by the U.S. Army Research Labo-
ratory Cyber Security Collaborative Research Alliance
under Contract Number W911NF-13-2-0045. The views
and conclusions contained in this document are those of
the authors, and should not be interpreted as represent-
ing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwith-
standing any copyright notation hereon. The research
work of Jens Grossklags was supported by the German
Institute for Trust and Safety on the Internet (DIVSI).

References
[1] Conger, K. Researchers: Uber’s iOS app had secret

permissions that allowed it to copy your phone screen.
Gizmodo, (2017).

[2] Lieberman, E. Hackers are gunning for your personal
data by tracking you. The Daily Caller, (2016).

[3] Sulleyman, A. Android apps secretly steal users’ data
by colluding with each other, finds research. Indepen-
dent, (2017).

[4] Revel, T. Android apps share data between them with-
out your permission. NewScientist, (2017).

[5] Norm, H., The Confused Deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev.,
(1988).

USENIX Association 28th USENIX Security Symposium 581

[6] Petracca, G., Sun, Y., Jaeger, T., and Atamli,
A. AuDroid: Preventing attacks on audio channels in
mobile devices. In ACSAC , (2015), ACM.

[7] Felt, A. P., Wang, H., Moshchuk, A., Hanna, S.,
and Chin, E. Permission re-delegation: Attacks and
defenses. In USENIX Security Symposium, (2011).

[8] Aafer, Y., Zhang, N., Zhang, Z., Zhang, X., Chen,
K., Wang, X., Zhou, X., Du, W., and Grace, M.
Hare hunting in the wild Android: A study on the threat
of hanging attribute references. In CCS , (2015), ACM.

[9] Roesner, F., Kohno, T., Moshchuk, A., Parno, B.,
Wang, H., and Cowan, C. User-driven access con-
trol: Rethinking permission granting in modern operat-
ing systems. In S&P, (2012), IEEE.

[10] Ringer, T., Grossman, D., and Roesner, F. Auda-
cious: User-driven access control with unmodified oper-
ating systems. In CCS (2016), ACM.

[11] Petracca, G., Reineh, A.-A., Sun, Y.,
Grossklags, J., and Jaeger, T. AWare: Pre-
venting abuse of privacy-sensitive sensors via operation
bindings. In USENIX Security Symposium, (2017).

[12] Onarlioglu, K., Robertson, W., and Kirda, E.
Overhaul: Input-driven access control for better pri-
vacy on traditional operating systems. In DSN , (2016),
IEEE/IFIP.

[13] Nadkarni, A., and Enck, W. Preventing accidental
data disclosure in modern operating systems. In CCS ,
(2013), ACM.

[14] Wijesekera, P., Baokar, A., Tsai, L., Reardon,
J., Egelman, S., Wagner, D., and Beznosov, K. The
feasibility of dynamically granted permissions: Aligning
mobile privacy with user preferences. In S&P (2017),
IEEE.

[15] Olejnik, K., Dacosta, I., Machado, J.S.,
Huguenin, K., Khan, M.E., and Hubaux, J.P.
Smarper: Context-aware and automatic runtime-
permissions for mobile devices. In S&P, (2017), IEEE.

[16] Jia, Y. J., Chen, Q. A., Wang, S., Rahmati, A.,
Fernandes, E., Mao, Z. M., and Prakash, A. Con-
texIoT: Towards Providing Contextual Integrity to Ap-
pified IoT Platforms. In NDSS , (2017).

[17] Acar, Y., Backes, M., Bugiel, S., Fahl, S., Mc-
Daniel, P. and Smith, M., Sok: Lessons learned from
android security research for appified software platforms.
In S&P, (2017), IEEE.

[18] Li, L., Bartel, A., Bissyandé, T. F., Klein, J.,
Le Traon, Y., Arzt, S., Rasthofer, S., Bodden,
E., Octeau, D., and McDaniel, P. Iccta: Detecting
inter-component privacy leaks in Android apps. In ICSE,
(2015), IEEE.

[19] Octeau, D., McDaniel, P., Jha, S., Bartel, A.,
Bodden, E., Klein, J., and Le Traon, Y. Effec-
tive inter-component communication mapping in An-
droid with Epicc: An essential step towards holistic se-
curity analysis. In USENIX Security Symposium, (2013).

[20] Nadkarni, A., Andow, B., Enck, W., and Jha, S.
Practical DIFC enforcement on Android. In USENIX
Security Symposium, (2016).

[21] Octeau, D., Luchaup, D., Dering, M., Jha, S.,
and McDaniel, P. Composite constant propagation:
Application to Android inter-component communication
analysis. In ICSE, (2015), IEEE.

[22] Octeau, D., Jha, S., Dering, M., McDaniel, P.,
Bartel, A., Li, L., Klein, J., and Le Traon, Y.
Combining static analysis with probabilistic models to
enable market-scale Android inter-component analysis.
In ACM SIGPLAN Notices, (2016).

[23] Krohn, M.N., Yip, A., Brodsky, M., Cliffer, N.,
Kaashoek, M.F., Kohler, E., and Morris R. In-
formation flow control for standard OS abstractions. In
SOSP, (2007).

[24] Zeldovich, N., Boyd-Wickizer, S., Kohler, E.,
and Mazières, D. Making information flow explicit
in HiStar. In OSDI, (2006).

[25] Chatterjee, R., Doerfler, P., Orgad, H.,
Havron, S., Palmer, J., Freed, D., Levy, K., Dell,
N., McCoy, D., and Ristenpart, T. The Spyware
Used in Intimate Partner Violence. In S&P, (2018),
IEEE.

[26] Chin, E., Felt, A. P., Greenwood, K., and Wag-
ner, D. Analyzing inter-application communication in
Android. In MobiSys (2011), ACM.

[27] Huang, L.-S., Moshchuk, A., Wang, H. J.,
Schecter, S., and Jackson, C. Clickjacking: Attacks
and defenses. In USENIX Security Symposium, (2012).

[28] Luo, T., Jin, X., Ananthanarayanan, A., and Du,
W. Touchjacking attacks on web in Android, iOS, and
Windows phone. In FPS (2012).

[29] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P.,
Jung, J., McDaniel, P., and Sheth, A. N. Taint-
droid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In USENIX OSDI
(2010).

[30] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E.,
Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
and McDaniel, P. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis
for Android apps. ACM Sigplan Notices, (2014), pp. 259–
269.

[31] Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A.,
Geambasu, R., and Sarda, N. CleanOS: Limiting
mobile data exposure with idle eviction. In USENIX
OSDI (2012).

[32] Sun, Y., Petracca, G., Ge, X., and Jaeger, T.
Pileus: Protecting user resources from vulnerable cloud
services. In ACSAC, (2016), ACM.

[33] Wijesekera, P., Baokar, A., Hosseini, A., Egel-
man, S., Wagner, D., and Beznosov, K. Android
permissions remystified: A field study on contextual in-
tegrity. USENIX Security Symposium, (2015).

[34] Levy, H. M. Capability-Based Computer Systems.
Digital Press. Available at http://www.cs.washington.
edu/homes/levy/capabook/, (1984).

[35] Prevelakis, V., and Spinellis, D. Sandboxing ap-
plications. In USENIX Annual Technical Conference,
FREENIX Track, (2001).

582 28th USENIX Security Symposium USENIX Association

http://www.cs.washington.edu/homes/levy/capabook/
http://www.cs.washington.edu/homes/levy/capabook/

[36] Chang, F., Itzkovitz, A., and Karamcheti, V.
User-level resource-constrained sandboxing. In USENIX
Windows Systems Symposium, (2000).

[37] Smalley, S., Vance, C., and Salamon, W. Imple-
menting SELinux as a Linux security module. NAI Labs
Report #01-043, (2001).

[38] Smalley, S., and Craig, R. Security Enhanced (SE)
Android: Bringing flexible MAC to Android. In NDSS ,
(2013).

[39] Ye, Z., Smith, S., and Anthony, D. Trusted paths
for browsers. ACM Transactions on Information and
System Security, (2005).

[40] Zhou, Z., Gligor, V., Newsome, J., and McCune,
J. Building verifiable trusted path on commodity x86
computers. In S&P, (2012), IEEE.

[41] Shapiro, J., Vanderburgh, J., Northup, E., and
Chizmadia, D. Design of the EROS trusted window
system. In USENIX Security Symposium, (2004).

[42] Li, W., Ma, M., Han, J., Xia, Y., Zang, B., Chu,
C.-K., and Li, T. Building trusted path on untrusted
device drivers for mobile devices. In Asia-Pacific Work-
shop on Systems, (2014), ACM.

[43] Eugster, P., Felber, P., Guerraoui, R., and Ker-
marrec, A.-M. The many faces of publish/subscribe.
ACM Computing Surveys, (2003).

[44] Mellor-Crummey, J. M., and Scott, M. L. Scal-
able reader-writer synchronization for shared-memory
multiprocessors. ACM SIGPLAN Notices, (1991).

[45] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin,
E., and Wagner, D. Android permissions: User atten-
tion, comprehension, and behavior. In SOUPS , (2012),
ACM.

[46] Rivest, R., Shamir, A., and Adleman, L. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM , (1978).

[47] Bianchi, A., Corbetta, J., Invernizzi, L., Fratan-
tonio, Y., Kruegel, C., and Vigna, G. What the
App is that? Deception and countermeasures in the An-
droid user interface. S&P, (2015), IEEE.

[48] Cummings, P., Fullan, D.A., Goldstien, M.J.,
Gosse, M.J., Picciotto, J., Woodward, J.P., and
Wynn, J. Compartmented Model Workstation: Results
through prototyping. S&P, (1987), IEEE.

[49] Schechter, S. Common pitfalls in writing about secu-
rity and privacy human subjects experiments, and how
to avoid them. Microsoft Tech. Rep. (2013).

[50] Felt, A. P., Egelman, S., Finifter, M., Akhawe,
D., and Wagner, D. How to ask for permission. In
USENIX Workshop on Hot Topics in Security (2012).

[51] Sheehan, K.B. Toward a typology of Internet users
and online privacy concerns. The Information Society,
(2012).

[52] Debatin, B., Lovejoy, J.P., Horn, A.K., and
Hughes, B.N. Facebook and online privacy: Attitudes,
behaviors, and unintended consequences. Journal of
Computer-Mediated Communication, (2009).

[53] Petracca, G., Atamli-Reineh, A., Sun, Y.,
Grossklags, J., and Jaeger, T. Aware: Controlling
app access to I/O devices on mobile platforms. CoRR
abs/1604.02171, (2016).

[54] Ongtang, M., McLaughlin, S., Enck, W., and Mc-
Daniel, P. Semantically rich application-centric secu-
rity in Android. Security and Communication Networks,
(2012).

[55] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and
Wallach, D. Quire: Lightweight provenance for smart
phone operating systems. In USENIX Security Sympo-
sium (2011).

[56] Sasse, M. A., Brostoff, S., and Weirich, D. Trans-
forming the ‘Weakest Link’ — a Human/Computer In-
teraction Approach to Usable and Effective Security BT
Technology Journal, (2001).

[57] Arce, I. The weakest link revisited [information secu-
rity]. In IEEE Security & Privacy, (2003).

[58] Fahl, S., Harbach, M., Acar, Y., and Smith, M.
On the Ecological Validity of a Password Study In Ninth
Symposium on Usable Privacy and Security, (2013).

Appendices
Appendix A - Study Demographics: In total, from
the 69 recruited subjects that completed our study, 34
(49%) were female; 36 (52%) were in the 18-25 years old
range, 27 (39%) in the 26-50 range, and 6 (9%) were in
above the 51 range; 33 (48%) were students from our In-
stitution, 9 of them (13%) were undergraduate and 24
(35%) were graduate students, 2 (3%) were Computer
Science Majors; 11 (16%) worked in Public Administra-
tion, 9 (13%) worked in Hospitality, 6 (9%) in Human
Services, 6 (9%) in Manufacturing, and 4 (6%) worked
in Science or Engineering. All participants reported be-
ing active smartphone users (1-5 hours/day). Also, 42
(61%) of the subjects were long-term Android users (3-5
years), others were long-term iOS users. For our labo-
ratory and field studies, we redistributed the available
participants as evenly as possible. Each lab group had
9 long-term Android users, the remaining 6 long-term
Android users participated in our field study.

Figure 8: Time analysis used to study the possibility of am-
biguous events delegation paths, as discussed in Section 4.2.

Appendix B - Time Constraints Analysis: We
leveraged data collected via the field study to perform
an analysis of time constraints for input events and ac-
tion/operation requests to calibrate the time window

USENIX Association 28th USENIX Security Symposium 583

for the event ambiguity prevention mechanism (Sec-
tion 4.2). Figure 8 reports the measurements of the
gaps15 between consecutive input events and consecu-
tive handoff events, as well as the lags between each
event and the corresponding response from the serving
program. From the measurements, we observed: (1) the
minimum gap between subsequent input events target-
ing the same program (211 ms) is an order of magnitude
larger than the maximum lag required by the program to
serve each incoming event (22 ms); and (2) the minimum
gap (171 ms) between subsequent handoff events target-
ing the same program is an order of magnitude larger
than the maximum lag required by the program to serve
incoming requests (15 ms). Hence, to avoid ambiguity,
we may set the time window to 150 ms to guarantee
that the entire delegation path can be identified before
the next event for the same program arrives. Lastly,
we observed that 87% of the delegation paths had a to-
tal length of three edges (one input event, one handoff
event, and one sensor operation request). The remain-
ing 13% of the delegation paths had a maximum length
of four edges (one additional handoff event), which fur-
ther supports our claim that we can hold events without
penalizing concurrency of such events.

Appendix C - Program Identification: To prove
the programs’ identity to users, EnTrust specifies both
the programs’ name and visual identity mark (e.g.,
icon) in every delegation request as shown in Figure 6.
EnTrust retrieves programs’ identity by accessing the
AndroidManifest.xml, which must contain a unique
name and a unique identity mark (e.g., icon) for the pro-
gram package. EnTrust verifies programs’ identity via
the crypto-checksum16 of the program’s binary signed
with the developer’s private key and verifiable with the
developer’s public key [46], similarly to what proposed
in prior work [47, 11].

Appendix D - Input Event Authentication:
EnTrust leverages SEAndroid [38] to ensure that pro-
grams cannot inject input events by directly writing
into input device files (i.e., /dev/input/*) correspond-
ing to hardware and software input interfaces attached
to the mobile platform. Hence, only device drivers can
write into input device files and only the Android Input
Manager, a trusted system service, can read such de-
vice files and dispatch input events to programs. Also,
EnTrust leverages the Android screen overlay mecha-
nism to block overlay of graphical user interface com-
ponents and prevent hijacking of input events. Lastly,
EnTrust accepts only voice commands that are pro-
cessed by the Android System Voice Actions module.17

EnTrust authenticates input events by leveraging six-
teen mediation hooks placed inside the stock Android
Input Manager and six mediation hooks placed inside
the System Voice Actions module.

Appendix E - Handoff Event Mediation:
Programs communicate with each other via Inter-
Component Communication (ICC) that, in Android, is

implemented as part of the Binder IPC mechanisms.
The ICC includes both intent and broadcast messages
that can be exchanged among programs. The Binder
and the Activity Manager regulate messages exchanged
among programs via the intent API.18 Programs can
also send intents to other programs or services by using
the broadcast mechanism that allows sending intents as
arguments in broadcast messages. The Activity Man-
ager routes intents to broadcast receivers based on the
information contained in the intents and the broadcast
receivers that have registered their interest in the first
place. To mediate intents and broadcast messages ex-
changed between programs completely, EnTrust lever-
ages mediation hooks placed inside the Activity Man-
ager and the Binder.

Notice that, other operating systems support mech-
anisms similar to Android’s Intents. For instance, Ma-
cOS and iOS adopt the Segue mechanism, while Chrome
OS supports Web Intents, thus EnTrust can be also im-
plemented for other modern systems supporting the co-
operating program abstraction.

Appendix F - Sensor Operation Mediation:
Android uses the Hardware Abstraction Layer (HAL)
interface to allow only system services and privileged
processes to access system sensors indirectly via a well-
defined API exposed by the kernel. Moreover, SEAn-
droid [38] is used to ensure that only system services
can communicate with the HAL at runtime. Any other
programs (e.g., apps) must interact with such system
services to request execution of operations targeting sen-
sors. EnTrust leverages such a mediation layer to iden-
tify operation requests generated by programs, by plac-
ing 12 hooks inside the stock Android Audio System,
Media Server, Location Services, and Media Projection.
Notes

1In this paper, we use the term “delegate” to refer to the use of IPCs
to request help in task processing, not the granting of permissions to
other processes.

2One of the surveillance mobile apps available online (e.g., flexispy).
3Several banks are now offering these services to their clients.
4https://source.android.com
5The runtime permission mechanism enabled users to revoke permis-

sions at any time.
6Source: https://fortune.com
7https://dialogflow.com
8https://source.android.com/compatibility/cts/
9Android Open Source Project - https://source.android.com

10This range was selected based on the size of the delegation graphs
created during our experiments, which should be representative of
real scenarios.

11https://developer.android.com/studio/test/monkey.html
12To stress test our system, we selected a lower bound that is consid-

erably lower than the maximum speed at which a user can possibly
keep tapping on the screen (∼210 ms).

13Chosen among the most-downloaded Android apps from the Google
Play Store and including all apps and system services shipped with
the stock Android OS.

14Equivalent of IPCs for Android OS.
15Gaps higher than 1,500 ms were excluded because not relevant to the

analysis.
16Android requires all apps and services to be signed by their developers.
17https://developers.google.com/voice-actions/
18https://developer.android.com

584 28th USENIX Security Symposium USENIX Association

