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ABSTRACT
Evasion attack on discrete data is a challenging, while practically in-

teresting research topic. It is intrinsically an NP-hard combinatorial

optimization problem. Characterizing the conditions guaranteeing

the solvability of an evasion attack task thus becomes the key to

understand the adversarial threat and to design efficient attack

methods. Our study is inspired by weak submodularity theory. We

characterize attackability of a targeted classifier in evasion attack

by bridging the attackability measurement and the regularity of the

targeted classifier. Based on our attackability analysis, we propose

a computationally efficient orthogonal matching pursuit-guided

based attack method for evasion attack on discrete data. It pro-

vides provably computational efficiency and attack performances.

Substantial experimental results on real-world datasets validate

the proposed attackability conditions and the effectiveness of the

proposed attack method.

1 INTRODUCTION
Despite fruitful progress of evasion attack on continuous data, such

as images and videos [2, 3, 5, 6, 19, 21, 33, 34], how to design adver-

sarial examples for discrete data remains a rarely investigated, but

important research problem. Discrete data pervasively exists in real-

world applications and analytic practitioners have been designed

for financial fraud detection, spam email detection, gene analy-

sis in bioinformatics and malware dynamic analysis, etc. Many of

these applications are safety-critical, while eager to deploy machine

learning technologies. Investigating the adversarial vulnerability

on discrete data thus becomes a must in these industrial practices.

Real-world discrete data are usually located in a space spanned

by physically meaningful dimensions. For example, the presence

or absence of a keyword in a document, a gene in a genome or

a function call of an executable file. The discrete attributes of an

object form a highly structured and semantic description of the

object. Compared to the low-level and continuous measurements

like pixel intensities, discrete attributes and their combination en-

code high-level qualitative concepts. Pioneering work of this topic,

such as evasion attack against spam filtering and NLP classifiers

[11, 14, 18, 23, 25, 29, 31, 32, 34–36], depends heavily on the prior

knowledge about feature extraction and domain-specific rules. In

general, adversarial attacks on discrete data raise the following

fundamental challenges to the research community.

First of all, designing adversarial modifications of discrete data

is intrinsically a combinatorial optimization task, which is NP-

hard and generally intractable. Similar to in the continuous domain,

the solvability of an evasion attack task on discrete data (a.k.a.

attackability) relates closely to the characteristics of the attack

objective function and the targeted classifier. The key questions

about characterizing the attackability are thus:

• What conditions does the attack objective need to
meet to define a tractable attack problem?

• Can we provide provably attack performances?

Both questions are open according to the current research

progress. Given the discontinuity nature of discrete data, modi-

fying any of the attributes might cause a big leap in the discrete

feature space. Gradient-based attack methods, though pervasively

used for continuous data, cannot be applied directly. Classically,

combinatorial optimization problems are [28] relaxed to continuous

linear or quadratic programming tasks. However, such solutions

require a simple form of the targeted classifier, like linear models.

They become infeasible when a highly non-linear deep neural net-

work based classifier is used. Recent works on graph poisoning

attack [1, 9, 38] and evasion attack against NLP classifiers [24] use

greedy search to solve the attack problem. Notably, both branches

of research efforts explicitly or implicitly formulate evasion attack

on discrete data as a problem of submodular function maximization.

Benefited from submodularity of the attack objective, the greedy

search based attack methods in these works enjoy strong perfor-

mance guarantees. However, it is still unclear how to evaluate

the attackability of a general evasion attack. Furthermore, enforc-

ing strict submodularity limits the choice of the targeted classifier

and/or harm the usability of the targeted classifier by introducing

artifacts into the classifier.

Secondly, it is difficult to find out the physical meaning of the

adversarial noise of continuous data. Especially for images, the in-

tensity change of individual pixels is not necessarily associated with

any meaningful characteristics of the visual contents. In contrast, a

change of discrete attributes indicates a drift in the concept space

spanned by the discrete attributes and implies the sensitivity of each

attribute for the classification task. Therefore, beyond delivering a

successful evasion from the targeted classifier, we expect to reveal

the answer to the question, "Can we associate the adversarial
modification of the discrete attributes with any characteris-
tics of the classification task, e.g. sensitivity of the objects?"

We echo the challenges by providing attackability guarantees of

white-box evasion attack against non-linear classifiers, such as deep

neural nets, on discrete data. We aim at flipping the classification

output while preserving the integrity of the data asmuch as possible.

Notably, we save for the future to address the issue of maintaining

the functionality of data during the attack, e.g., preserving the

applicability of malware or readability of texts after adversarial

perturbations. On one hand, defining the rules to preserve the data

functionality depends heavily on domain-specific knowledge. On

the other hand, it doesn’t change the combinatorial optimization

nature of the attack problem. Our attackability study can still apply

by integrating a-priori functionality-preserving rules of adversarial

attribute modifications.

We summarize our contributions as follows:

• We cast the evasion attack problem on discrete data as a set

function based optimization task. We show that the attack

problem is solvable if the targeted classifier follows certain
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regularity constraints. Benefited from these constraints, the

objective function of the attack problem enjoys weak sub-

modularity, which makes the generally NP-hard problem

feasible to solve approximately with polynomial complexity

by greedy search based methods. We instantiate the attacka-

bility study on recurrent neural network (RNN) based classi-

fiers to demonstrate how to evaluate the attackability given

a concrete classifier.

• We reveal that the approximation quality of the greedy

search based solution depends on the regularity of the tar-

geted classifier, which determines the submodularity ratio of

the attack objectives. It indicates a balance between the mod-

eling flexibility of the classifier and its attackability. Fewer

regularity constraints enable broader choices of the classi-

fiers’ architectures. However, it makes the attack problem

more difficult to solve simultaneously. Furthermore, to ad-

dress the computational bottleneck of the primitive greedy

search, we propose an orthogonal matching pursuit based

greedy search to improve the efficiency of the solution. The

proposed method provides a bounded estimator of the mar-

ginal gain of the attack objective with respect to each at-

tribute. It only traverses the attributes of the largest marginal

gain, in order to fasten the greedy search while providing a

provable approximation quality.

• In addition, we explore the association between the evasion

attack and sensitivity analysis of the attributes. We extend

the evasion attack to flag commonly useful attributes to

attack different instances. Despite a lack of theoretical expla-

nation, we observe an interesting consistency between the

most sensitive attributes and the most commonly selected

attributes to attack.

2 RELATEDWORK
Most research effort of evasion attack with discrete input stud-

ies attacking NLP classifiers [11, 14, 18, 23, 25, 29, 31, 32, 34–36],

where the attack is conducted by modifying or replacing individual

words or sentences, following heuristic rules, such as replacing

words with synonyms or sentences with similar alternatives ei-

ther defined manually or found by grouping entities with word-

embedding techniques. These works borrow directly the key idea of

the evasion attack in continuous domain. They choose the discrete

word/sentence transformations, which are mostly aligned with the

gradient vector of the attack objective. Similarly [18] proposes to

conduct Carlini’s gradient-guided evasion attack [5] on continuous

word-embedding space first. It generates a target embedding repre-

sentation of the text. After that, the method searches for the entities

carrying the most similar embedding vector with the targeted em-

bedding representation. These entities are then used to replace the

corresponding words/sentences in the original text. These methods

have no guarantee of delivering a successful attack. On one hand,

the word embedding space could be non-smooth. The embedding

vectors of synonyms could be so different that they don’t appear as

neighbors in the embedding space. On the other hand, nevertheless,

the gradient vector of the attack objective approximates well only

local variations around the input embeddings. Modifying even one

word/phrase could violate this assumption in the embedding space.

Therefore, the attack methods applied popularly on continuous

data can’t be used directly for discrete data.

Submodular function maximization has been introduced as an ef-

ficient solution to combinatorial optimization since 1970’s [16, 17].

Early stage works [16, 17, 26] focuses on submodular function

maximization with uniform matroid constraint, a.k.a. cardinality

constraint. Calinescu et al further extend its applicability to more

general matroid constraints. As pointed in [17], the theory of sub-

modular functions offers a decent solution to the NP-hard combi-

natorial optimization problem. For monotone submodular function

maximization, primitive greedy search with polynomial complex-

ity can achieve an approximation ratio of 1 − 1/e . Furthermore,

[7, 15, 27] prove that non-monotone submodular functions sub-

ject to general and uniform matroid constraints can still enjoy an

approximation ratio of 0.491 and 0.478. In evasion attack on dis-

crete data, the use of submodular functions has been witnessed in

[1, 9, 24, 38]. [1, 9, 38] propose to add or remove edges of a given

graph, in order to conduct evasion attack against graph embedding

based node classifier. Though it is not explicitly claimed, the attack

objective function, defined as a sum of smallest eigenvalues of the

adjacency matrix of the graph, is intrinsically a submodular func-

tion. Enjoying strict submodularity, the proposed graph poisoning

method selects edges to flip with greedy search efficiently to evade

from the graph embedding based classifier successfully. [24] intro-

duces additional positiveness constraint over the CNN and RNN

based classifier’s parameters. The resultant classifier is proven to be

submodular. A greedy search based attack method is then used to

select words/sentences and replace them with feasible candidates.

Despite of the effectiveness, the use of submodular function is

limited, especially in adversarial learning research. It has been ob-

served that there are many practical settings inducing functions

that deviate from submodularity. Greedy search based methods un-

fortunately perform arbitrarily poorly in general when the target

function even slightly deviates from strict submodularity. Besides,

enforcing extra constraints over the targeted classifiers of adversar-

ial attack introduces artefacts into the classifiers’ architectures and

limits the model choice. It can cause degradation of classification

accuracy, thus reduces the usability of the classifier. Therefore, such

attack setting is still far from the adversarial threat witnessed in

real-world practices. Recent research efforts break the hurdle by

introducing γ -weakly submodular functions [8, 10]. Submodularity

ratio γ measures the distance of the function from being strictly

submodular. The standard greedy algorithm achieves a graceful

approximation ratio of 1− e−γ for the problem of maximizing such

functions subject to a cardinality constraint.

It is a brand new research problem to apply the theory of weak

submodularity in adversarial attack on discrete data. Intuitively,

weak submodularity can broaden the choice of feasible attacks,

which helps to formulate more realistic scenarios of the adversarial

threat. Nevertheless, it is still unclear how to design a weakly sub-

modular objective function for the attack. The celebrated work by

[12] sets up an equivalence between the smoothness and strongly

concavity of log-likelihood functions and the weak submodularity

of the objective functions in a feature subset selection problem.

Inspired by this work, we reveal that the evasion attack can be

formulated as a problem of weakly submodular function maxi-

mization, if the targeted classifier follows even less tight regularity



Attackability Characterization of Adversarial Evasion Attack on Discrete Data Conference xxx, xxx xxxx, xxxx, xx, xxx

constraints. We argue that enforcing strong concavity over the clas-

sifier is not obliged to guarantee the weak submodularity. Enjoying

the framework of weak submodularity, we can characterize the

attackability of evasion attack given the regularity measurement of

the targeted classifier.

3 ATTACKABILITY ANALYSIS
We use x = {x1, x2, x3, ..., xn } to represent an instance with n dis-

crete features. Each xi is a cell ofm (m ≥ 1) categorical attributes.

For example, an xi can be a code segment in a malware file asso-

ciated with one unique function or a medical examination output

linked to them different biological characteristics of human body.

In practice, we cast each categorical attribute to a D-dimensional

pre-trained embedding vector, e.g., ej ∈ RD , j = 1, 2, ...,m.

To represent instance x by the embedding vectors of its at-

tribute values, we introduce binary variables b = {b ji }, i=1, 2, ...,n,
j=1, 2, ...,m, where b

j
i = 1 when the j-th attribute value is selected

for xi , and b
j
i = 0 otherwise. One instance x encoded by the em-

bedding vectors can then be represented as an Rn∗m∗D tensor with

x{i , j ,:} = b
j
i e

j
i .

We use b̂ = { ˆb ji } as the adversarially tuned variable modified

from b. If no modification,
ˆb
j
i = b

j
i . Otherwise,

ˆb
j
i , b

j
i . Depend-

ing on the type of attacks to implement, e.g., insertion, deletion or

substitution, ˆb ji can have different values. Insertion is to let
ˆb
j
i = 1,

given b
j
i = 0, ∀j = 1, ...,m. Deletion is to let

ˆb
j
i = 0, given b

j
i = 1.

Substitution is to let
ˆb
j
i = 1, ˆb

j′
i = 0, given b

j
i = 0, b

j′
i = 1, j , j ′. A

modified instance x̂ can thus be written as x̂{i , j ,:} = ˆb
j
i e

j
i .

Let y be the target class label of the evasion attack. The goal

is to make fy (x̂) deviate from fy (x) = 0. In other words, we aim

at maximizing fy (x̂), so that x is modified to get y assigned to it.

The evasion attack task can then be formulated as a process of set

function optimization, defined as

S∗ = argmax

|S | ≤K
д(S)

where д(S) = max

l ⊂S
fy (x̂), l = diff (b, ˆb)

(1)

where |S | is the cardinality of set S . Function д(S) is a set function
measuring themaximum extent towhich the attacks in S can change
the classification result. The diff function reports the set of the

indices where b and ˆb are different. In other words, l denotes the set
of modification to make for attacking x. To preserve data integrity,

the modification made on b̂ should be as small as possible (|S | ≤ K ).
Obviously д(S) is a non-decreasing monotone set function as

д(S) ≤ д(T ) if S ⊆ T . By solving Eq. (1), we pursue to find the

optimal set of adversarial discrete attribute modification, including

adding, deleting and replacing values of discrete attributes in the

original data instance.

3.1 Weak Submodularity Based Solvability
Conditions

To solve the attack problem in Eq.(1), we first evaluate its solvabil-

ity conditions based on weak submodularity [10]: we require the

attack objective to be weakly submodular and show it can be

solved approximately with polynomial complexity given this con-

straint. We introduce submodularity ratio [10] to measure the

attackability of the evasion attack problem defined by Eq.(1). For a

weakly-submodular attack objective, the higher the submodularity

ratio is, the better attack solution we can obtain via maximizing

the attack objective, while the less constraints we need to enforce

over the classification model.

We elaborate our solution by first introducing the definition of

weak submodularity and submodularity ratio.

Definition 1. Given a set cardinality threshold k ≥ 1, the sub-
modularity ratio γk of a set function д(.) w.r.t. a set H :,

γk = min
S ⊆H ,A: |A | ≤k ,S∩A=∅

∑
a∈A д(S ∪ a) − д(S)

д(S ∪A) − д(S)
(2)

If γ = min
k

γk < 1, the set function д(S) is weakly submodular.

Otherwise, д(S) is submodular when γ ≥ 1 for any S .
We define the regularization constraint over the classification

function fy by extending Restricted Strong Convexity (RSC) in The-

orem.1 of [12] to apply to non-concave functions. It guarantees

further weak submodularity of the attack objective of broader

classes of function forms.

Definition 2. Let Ω = (x,y), x,y ∈ Rn and ℓ: Rn→R be a con-
tinuously differentiable function. A function f is (mΩ,MΩ)-bounded
on Ω, if for any (x,y) ∈ Ω,mΩ ∈ R andMΩ ∈ R

+:

f (y) − f (x) − ⟨∇f (x),y − x⟩ ≥ −
MΩ

2

∥y − x ∥2
2

f (y) − f (x) − ⟨∇f (x),y − x⟩ ≤ −
mΩ

2

∥y − x ∥2
2

(3)

Remark 1. If mΩ > 0, f is then strongly concave. If mΩ ≤

0, f may violate the concavity constraint and presents linearity or
convexity. It is easy to find that, larger MΩ and smaller mΩ relax
the bounded constraint enforced to the function f , which allows f to
choose among a broader class of functions.

We then present the regularity constraint enforced on fy to

guarantee weak submodularity of the attack objective in Theorem

1. We then link the lower bound of the submodularity ratio (how

"weakly submodular" the attack objective is) to the approximation

quality of Eq. (1) in Theorem 2. Both theorems form the base of the

attackability study of the evasion attack on discrete data.

Theorem 1. Let b as the unchanged original binary indicator
defined in Eq.1. Let Ωk = {( ˆb, ˆb

′) : |diff (b, ˆb)| ≤ k, |diff (b, ˆb ′)| ≤
k, |diff ( ˆb, ˆb ′)| ≤ k}, where ˆb and ˆb ′ denote two sets of selected dis-
crete attributes to be modified adversarially. If the classifier fy is
(mΩk ,MΩk )-regularized on Ωk , the д(S) defined by Eq.1 is weakly
submodular. Its submodularity ratio γk on Ωk is bounded from below:

γk ≥
1

2ψkMΩk

ψk = 1 +
k2 |mΩk |

2∥∇fy (b)s ∥
2

2

, If mΩk ≤ 0

ψk =
1

2mΩk
, If mΩk > 0

(4)

where ∇fy (b)ν denotes the elements of ∇fy (b) corresponding to the
difference between the index sets lb and lb′ , where ν = lb′ \lb +lb \lb′ .



Conference xxx, xxx xxxx, xxxx, xx, xxx

Input: The attack budget K , the set function д(S) defined by

Eq. (1) and the set H = {(i, j), i = 1...n, j = 1...m} of
all the modifiable discrete values

Output: selected support set Sk , with |Sk | ≤ K ; д(Sk ) and
the optimal subset of Sk achieving the attack goal

S0 ← ∅
for k = 1 to K do

s← argmax

j ∈H/Sk−1
д(Sk−1 ∪ j) − д(Sk−1)

Sk←Sk−1 ∪ {s}
end
Algorithm 1: Forward Stepwise Greedy Search (FSGS)

According to Theorem.1, if the targeted classifier fy has a well

regularized function form as required by Eq.3, the objective function

of the evasion attack defined by Eq.1 then enjoys weak submod-

ularity with a bounded submodularity ratio. As proved in [10],

such a weakly submodular attack objectivecan be maximized by

incrementally changing discrete attributes. This primitive greedy

search based solution is also known as Forward Stepwise Greedy
Search (FSGS) [12]. More specifically, let S denote the set of modified

attributes in the previous iterations. In next iteration, FSGS finds
s = (i, j) to add to S , if ˆb

j
i is set to be different from b

j
i to achieve

the largest marginal gain of д(S ∪ s) over д(S). The algorithm is

represented in Algorithm.1.

This primitive greedy search method is computationally expen-

sive, because in each iteration, FSGS evaluates all the unchanged
values to select the next candidate to modify. That’s to say, s is se-
lected from all the unchanged values to see which makes maximum

improvement of д(S ∪ s) over д(S). In each iteration, FSGS needs

O((
∑k−1
i=1 C

i
k )(|H | − κ)) objective function evaluations to search the

optimal candidate attribute s , where |H | denotes the size of all

feasible candidate attributes to change and κ = |Sk |. As seen, the
computational cost of FSGS becomes quickly expensive with in-

creasingly larger |Sk |. It is the major bottleneck of FSGS. We discuss

how to address this issue and deliver faster while successful attack

later in Section.4.

Theorem 2. [Theorem 3 in [12]] Let the evasion attack prob-
lem defined by Eq.(1) be with the classification function fy that is
(mΩk ,MΩk )-bounded. Let Sk be the set of the values selected by FSGS
and S∗k be the underlying optimal value set following the support size
constraint. The corresponding attack objective values reached by Sk
and S∗k are дFSGS and дOPT , respectively. Then дFSGS is bounded:

дFSGS ≥ (1 − e−γSk )дOPT
(5)

where γSk is the submodularity ratio of д(S) defined on the selected
set Sk . Especially, if д(S) is submodular, the lower bound gives as:

дFSGS ≥ (1 − e−1)дOPT
(6)

We can find explicitly the relation between the regularity of the

classification fy and solvability of the attack objective as follows:

• Submodularity Ratio v.s. Regularity of fy : According
to Theorem 1, a classification function fy following the

bound conditions is guaranteed to be weakly submodular. A

smoother function fy (smallerMΩ) with highermΩ (closer

to concavity) can give higher bound of the submodularity

ratio of д(S). It thus makes Eq. (1) closer to submodularity.

In contrary, a less regularized fy , espeically whenmΩk ≤ 0,

the submodularity ratio of the attack objective deteriorates

significantly.

• Solution quality v.s. Regularity of fy : According to The-

orem 2, the higher submodularity ratio the attack objective

has, the better approximation quality the solution derived

reaches, compared to the underlyingly optimal solution to

the attack problem. In summary, with a more regularized

function fy , it is more likely to solve the NP-hard attack

problem approximately with greedy search based solution.

3.2 Attackability of RNN
We instantiate the attackability condition proposed in Theorem 1

to the case where recurrent neural network (RNN) based classifier

is applied. It is worth noting that the attackability analysis is not

limited to RNN. We use this case study to demonstrate how to

characterize the attackability for a given classifier on discrete data.

We consider a simple but generalizable RNN model fy (x) with n
time steps, taking input of the n discrete values in x. The hidden
state ht of RNN by taking xt is:

ht = ϕ(α
Tht−1 + β(bt ⊙ E) + θ ) (7)

where α , β and θ are the parameters of the unit, and bt ⊙ E =

[b1t e
1
;b2t e

2
; ...;bkt e

m ] is the representation of xt in its attribute

value embedding form. The output of the classifier is given based

on the hidden unit of the last time step, as fy (x) = ϕy (wT
y hn + θy ),

where wy and θy are the parameters of the classification layer,

ϕ and ϕy are the activation function of each hidden unit and the

classification layer. Notably, [22] defines deep submodular functions

for text classification. Nevertheless, they are not applicable in the

setting of adversarial attack.

According to Theorem 1, the attackability condition of evasion

attack against the general form of RNN classifier can be given as:

Corollary 2.1. Weakly Submodular Attack Objective.Given
the classifier as fy (x) and the domain Ωk ∈ R

n ∗ Rn , ϕ and ϕy can
be chosen as Sigmoid and Tahn functions. The activation function of
fy is thus non-concave andmΩk of fy is negative. The corresponding
attack objective function д(S) defined by Eq. (1) is weakly submodular.

Remark 2. Let ρ be the set of values selected to attack and |ρ |
be the attack budget. The submodularity ratio γ of д(S) on Ω |ρ | is
bounded from below as:

γΩ |ρ | ≥
|ρ |2 |∇fy (b)ρ |

4(2 + |∇fy (b)ρ |)(2 + |∇fy (b)ρ | + ∥∇fy (b)ρ ∥2
2
)

(Tanh activation f unction)

γΩ |ρ | ≥
|ρ |2 |∇fy (b)ρ |

4(1 + |∇fy (b)ρ |)(1 + |∇fy (b)ρ | + ∥∇fy (b)ρ ∥2
2
)

(Siдmoid activation f unction)

(8)

where |∇yf (b)ρ | denotes the L1-norm of the gradient computed w.r.t.
the original binary vector b without adversarial perturbation.

Enforcing additional constraints over the regularity of fy can

make the attack objective function closer to submodularity. An

example can be found as proposed in [24], where the parameters of



Attackability Characterization of Adversarial Evasion Attack on Discrete Data Conference xxx, xxx xxxx, xxxx, xx, xxx

the RNN-based classifier fy are forced to be positive to guarantee

the hidden layer output to be positive. The resultant attack objective

д(S) is thus proved to be submodular. It can be considered as a

special case of the attackability framework proposed by Theorem.1.

Corollary 2.2. Submodular Attack Objective. Let fy be the
RNN classifier defined by Eq. (7). We assume that all the parameters
of fy are positively valued. Let ρ be the set of attributes selected
to attack. Given the positiveness constraint, the activation function
of fy is strictly concave andmΩ |ρ | of fy is positive. We can further

derive
2(1+ |∇fy (b)ρ |)

|ρ |2 ≥mΩ |ρ | > 0 and MΩ |ρ | ≥
2(1+ |∇fy (b)ρ |)

|ρ |2 . The
submodularity ratio γΩ |ρ | ≥ 1 of the corresponding д(S). The attack
objective is thus submodular.

Comparing Corollary 2.1 and Corollary 2.2, we can observe bal-

ance between model usability and attackability. On one hand,

though submodularity can improve the approximation quality of

the greedy search based solution, enforcing the positiveness con-

straint inevitably introduces unnecessary bias into the classifier

design. It can reduce the classification power of the classifier. On the

other hand, as shown by Corollary.2.1, fy is free of the additional

positiveness constraint. It loosens the bound condition by allowing

mΩ to be negative, which gives more freedom in choosing the form

of fy . However, the attack objective loses submodularity as the

lower bound of the submodularity ratio degrades significantly.

3.3 Link to Sensitivity Analysis of Attributes
Though conducting sensitivity analysis of the attributes is be-

yond our scope, it is also interesting to find out that the evasion

attack on discrete attributes can unveil sensitivity information of

different attributes, other than just cheating the classifier. For a

given classification task, the adversarial attacker can gain the task-

specific knowledge, such as, the classifier’s output might be
highly sensitive to the perturbation over a specific subset of
the discrete attributes. These attributes are the origin of adver-

sarial vulnerability of the systems running in the given task. They

can potentially be informative features for classification at the same

time. On one side, unveiling the useful information can help us

interpret physical meaning of the selected attributes.On the other
side, it also helps the adversarial attacker understand the statistical
characteristics of the training data for better attack and/or infor-

mation stealing. From the perspective of information security, such

threat can be categorized as data privacy breach.
We can explore the risk induced by the evasion attack, that is,

searching for the optimal support set of the attributes that can be

used to successfully attack the classifier over multiple discrete data
instances.We extend Eq.1 to apply it over a set of data instances:

S∗ = argmax

|S |≤K

R∑
r=1

дr (S )

where дr (S ) = max

l⊂S
fy (x̂r )

(9)

where дr (S) is the attack objective function defined based on each

discrete data instance xr . The notation of дr (S) follow those used

in Eq. (1). As each дr (S) is at least weakly submodular, the sum

of дr (S) is also weakly submodular. The submodularity ratio of

the attack objective function over multiple data instances gives

asmin{γ 1,γ 2, ...,γR }, where γ r is the submodularity ratio of each

дr (S). We can still use greedy search to solve the attack problem

and find out the set of discrete attributes that are generally useful for
attacking multiple data instances. Intuitively, the output of the clas-
sifier fy should be statistically sensitive to adversarial perturbation

over these identified attributes. In the empirical study, we confirm

our intuition by first measuring attribute-wise sensitivity with the

one-factor-at-a-time method [4]. We then observe the overlapping

between the top-ranked attributes according to their sensitivity

scores and the attributes selected for adversarial attack in Section.5.

4 PROVABLE APPROXIMATION QUALITY OF
GRADIENT-GUIDED GREEDY SEARCH

The computational complexity of FSGS increases drastically as the

number of the modifiable attributes in discrete instance x becomes

larger. In our application datasets presented in next section, there

can be more than 10k modifiable attribute values. This is the major

bottleneck for applying FSGS practically. To address the issue, we

propose an efficient attack solution based on orthogonal matching

pursuit [30], which is referred asOrthogonal Matching Pursuit-based
Greedy Search (OMPGS). This method narrows down the candidate

attribute value modifications to those that correlate the best with

the orthogonal complement of the attributes already selected to

modify. These attribute values are identified by first calculating

the gradient of fy (x) with respect to b, denoted as ∇(fy (b)). The
candidate attributes to modify are chosen as the ones corresponding

to the gradient elements with the largest magnitudes. We conduct

greedy search only within these candidate features to choose the

optimal attribute for adversarial tuning.

Algorithm 2 presents the pseudo codes of OMPGS. In each itera-

tion, for each subset l ′ of the previous support set Sk−1, we com-

pute the gradient of fy with respect to bl ′ (binary matrix b with

the entries in l ′ changed). The top-k ′ attributes with the largest

magnitudes in the gradient vector are selected to form a candidate

set s ′. We can then find out the optimal attribute s to extend for each
subset l ′ and record the optimal attack objective value д(Sk−1 ∪ s).
In the outer iteration, we choose finally the attribute j∗ producing
the largest marginal gain to add into Sk−1.

The worst case cost of objective function evaluation in each

iteration of OMPGS is bounded by O((
∑k−1
i=1 C

i
k ))|k

′ |. We adjust

k ′ to achieve a trade-off between enlarging the search range of

greedy search and the cost of function evaluation. Usually k ′ is
much less than |H | − |Sk |, espeically when H is significantly large

(e.g. H >10k). Thus OMPGS runs significantly faster than FSGS.
To further illustrate the rationality of the proposed OMPGS, we

show that the magnitude of each element in ∇(fy (b)) can be used

to measure the marginal contribution of adding the corresponding

attributes in the candidate set for adversarial attack.

Theorem 3. Gradient as Indicator. We assume S and T as two
independent sets of the discrete attributes. S ∩T = ∅. |T | ≤ k . Modifi-
cation b̂S∪T and b̂S are made by the optimal solution of the attack
given the support set as S ∪ T and S , resulting in x̂S∪T and x̂S , re-
spectively. Following the notations in Theorem 1, the lower bound of
the marginal gain by adding extending the set S to S ∪T gives as:

fy (x̂S∪T ) − fy (x̂S ) ≥
1

2M |S |+k
∥∇fy (b̂S )T ∥22 (10)
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Input: The attack budget K , the set function д(S) defined by

Eq. (1) and the set H = {(i, j), i = 1...n, j = 1...m} of

all the modifiable discrete attributes

Output: selected support set Sk , with |Sk | ≤ K ; д(Sk ) and
the optimal subset of Sk achieving the attack goal

S0 ← ∅
for k = 1 to K do

T = ∅
for l ′ ⊂ Sk−1 do

r←∇fy (bl ′)
s′ = {s ′

1
, s ′
2
, ..., s ′k ′}← argmax

j ∈{H/Sk−1 }
| < ej , r > |

s←argmax

j ∈s′
д(Sk−1∪{j})

T = T ∪ {(s,д(Sk−1∪s))}
end
j∗←argmax

j ∈T
д(Si−1∪{j})

Sk←Sk−1 ∪ {j
∗}

end
Algorithm 2: Orthogonal Matching Pursuit based Greedy

Search (OMPGS)

whereM |S |+k is the bound condition parameter defined on the domain
Ω |S |+k according to Eq.3. When m |S |+k > 0 in Eq.3, the attack
objective д(S) is submodular. The upper bound of the marginal gain
can be further formulated as:

fy (x̂S∪T ) − fy (x̂S ) ≤
1

2m |S |+k
∥∇fy ( ˆbS )T ∥

2

2
(11)

If m |s |+k ≤ 0, the attack objective is weakly-submodular. The
upper bound of the marginal gain gives as:

fy (x̂S∪T ) − fy (x̂S ) ≤ ˜ψ ∥∇fy ( ˆbS )T ∥
2

2
(12)

where ˜ψ =
|∇fy (bS )T |
∥∇fy (bS )T ∥2

2

+
m |S |+kk2

2∥∇fy (bS )T ∥2
2

According to Theorem 3, the magnitude of each element in the

gradient vector derived in each iteration of Algorithm 2 provides a

bounded estimate of the marginal gain by adding the corresponding

attribute into the support set to attack. Intuitively, with the bounded

estimate, we can shrink the candidate set for the attack in order to

focus on the attributes that can potentially bringmore improvement

of the attack objective than the others. In this way, we reduce

the number of attributes to traverse during the greedy search of

each iteration, while preserving the solution quality as much as

possible. Indeed, we can provide a provably lower bound of the

approximation quality of OMPGS as follows:

Theorem 4. Withψ defined in Theorem 3, let Sk be the support
set of the selected attributes to attack with OMPGS, the corresponding
objective value дOMPGS is bounded from below as:

дOMPGS ≥ (1 − e
mΩ
|S∗k |
/MΩ

|S∗k | )дOPT , (mΩ |S∗k |
> 0)

дOMPGS ≥ (1 − e
1/(2 ˜ψMΩ

|S∗k | ))дOPT , (mΩ |S∗k |
≤ 0)

(13)

Theorem 4 gives the intuition that the performance of FSGS will
be better than that produced by OMPGS, when the attack objective

is submodular. FSGS and OMPGS have the same lower bound of the

approximation quality. In addition, we find that the upper and lower

bound of the marginal gain are tighter when the classifier fy is

tightly bounded and the attack objectgive is submodular, compared

to the weakly submodular opponent. If the classifier yf is well

bounded to gurantee the submodularity, the gradient magnitude of

yf provides a more accurate estimate of the marginal contribution

of each attribute. OMPGS thus achieves a good balance between

economic computing and effective greedy exploration.

5 EXPERIMENTS
5.1 Dataset Information
We include two real-world evaluation datasets, cyber security and

electronic medical service, which are briefly introduced due to

space limits. More information can be found in Appendix A.

Intrusion Prevention SystemDataset (IPS) in Cyber Security.
We collect one day of IPS records from 242,467 endpoint devices con-

taining 29,641 intrusion events. Each intrusion instance is composed

by 20 intrusion steps. On each intrusion step, one of 1,103 different

malicious actions can be selected. We embed each action as a 70-

dim vector. Then one IPS data instance is given as x ∈ R20∗1103∗70

according to the definition given in Section 3. A classifier is built

to predict if, given an intrusion, the next action would fall into 2

highly malicious actions and a third class for all others. The evasion

attack is non-targeted. We aim at mis-classifying an x to any of the

two classes other than the true class label, by replacing the original

action at a given intrusion step with a new action.

Electronic Health Records (EHR) [13]. The real-world EHR

dataset consists of time-ordered medical visit records of 7314 pa-

tients. One patient data instance is organized as a tensor x ∈
R200∗4130∗70, with 200 medical visits

1
, 4130 diagnosis codes

2
each

of which is embedded as a 70-dim vector. A classifier is built for a

binary task: predicting the risk of a patient suffering a heart disease.

The evasion attack is simply to flip the binary classification output

by changing the presence of a diagnosis codes in one visit (presence

to absence, or absence to presence).

5.2 Experimental Setup
We instantiate the attackability study to the standard Long Short-

Term Memory (LSTM) model. To demonstrate the link between the

regularity of the classifier and its attackability, we train three LSTM

classifiers following different regularity constraints for each dataset:

1) LSTM: standard LSTMwithout any additional constraints, whose

attack objective is weakly submodular with low submodularity ratio;
2) LSTM-Sub: LSTM with positiveness constraints proposed in

[24], whose attack objective is strictly submodular according to

Corollary 2.2; 3) LSTM-Noise: LSTM with parameter truncation,

i.e., any parameters with their values less than -1 are truncated and

assigned randomized positive values.

To show how the attack methods perform given different levels

of attack difficulty, we require each attack method to cause misclas-

sification with a classification probability of 0.5 and 0.7, noted as

Attack Confidence Threshold in the results.

1
For the patients with less than 200 visits, we pad the empty observations by setting

the corresponding b ji = 0.

2
One code is the occurrence of a disease, a symptom, or an abnormal finding, seehttp:

//www.icd9data.com/.

http://www.icd9data.com/
http://www.icd9data.com/
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Table 1: Attack Performances on IPS dataset

Model Attack Confidence = 0.5

Attack Algorithm

k = top 2 k = top 4 k = top 6 k = top 10

ANC ↓ AI ↓ SR ↑ ANC ↓ AI ↓ SR ↑ ANC ↓ AI ↓ SR ↑ ANC ↓ AI ↓ SR ↑

LSTM

SGS 2.93 3.87 0.89 2.41 3.03 0.91 2.12 2.55 0.90 1.72 1.96 0.89

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 1.51 1.00 1.00 3.23 1.00 1.00 3.74 1.00 1.00 3.86 1.00 1.00

OMPGS-Rand 2.75 3.03 0.98 2.98 3.42 0.98 3.12 3.66 0.96 3.37 4.15 0.96

OMPGS 2.12 2.15 0.98 1.71 1.75 0.98 1.60 1.65 0.98 1.52 1.57 0.98

LSTM-Noise

SGS 3.39 4.45 0.90 2.76 3.39 0.86 2.47 2.98 0.89 1.98 2.25 0.89

FSGS ANC = 1.20 AI = 1.22 SR = 1.00

GradAttack 1.59 1.00 1.00 2.43 1.00 1.00 3.62 1.00 1.00 5.97 1.0 1.00

OMPGS-Rand 2.33 2.56 0.99 2.70 3.19 0.99 2.93 3.55 1.0 3.23 4.12 0.99

OMPGS 1.78 1.82 0.99 1.57 1.61 1.00 1.47 1.49 1.00 1.40 1.41 1.00

LSTM-Sub

SGS 2.96 3.96 0.96 2.47 3.03 0.93 2.18 2.51 0.94 1.78 1.93 0.94

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 1.20 1.00 1.00 1.34 1.00 1.00 1.34 1.00 1.00 1.40 1.00 1.00

OMPGS-Rand 1.69 1.78 0.99 2.29 2.62 0.99 2.59 3.12 0.99 3.02 3.84 0.99

OMPGS 1.01 1.01 0.99 1.01 1.01 0.99 1.01 1.01 0.99 1.01 1.01 0.99
Attack Confidence = 0.7

LSTM

SGS 3.03 4.03 0.91 2.52 3.15 0.91 2.11 2.56 0.90 1.67 1.91 0.90

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 1.50 1.00 0.99 3.23 1.00 0.99 3.76 1.00 0.99 3.88 1.00 0.99

OMPGS-Rand 2.78 3.08 0.99 3.11 3.61 0.99 3.23 3.87 0.97 3.41 4.26 0.91

OMPGS 2.18 2.22 0.98 1.75 1.79 0.98 1.69 1.75 0.98 1.56 1.64 0.96

LSTM-Noise

SGS 3.34 4.38 0.87 2.79 3.56 0.90 2.45 2.97 0.89 2.45 2.97 0.89

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 1.59 1.00 0.99 2.44 1.00 0.99 3.58 1.00 0.99 5.96 1.00 0.99

OMPGS-Rand 2.45 2.71 0.99 2.83 3.40 0.99 3.06 3.72 1.00 3.24 4.02 0.91

OMPGS 1.95 2.02 0.99 1.70 1.75 1.00 1.63 1.65 1.00 1.58 1.59 0.99

LSTM-Sub

SGS 3.07 4.16 0.95 2.56 3.20 0.97 2.29 2.73 0.96 1.96 2.17 0.95

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 1.22 1.00 0.98 1.36 1.00 0.97 1.35 1.00 0.97 1.45 1.00 0.97

OMPGS-Rand 1.70 1.80 1.00 2.27 2.64 1.00 2.65 3.20 1.00 3.05 3.92 1.00

OMPGS 1.04 1.04 1.00 1.02 1.02 1.00 1.01 1.01 1.00 1.02 1.02 1.00

We include 4 state-of-the-art greedy-search based attack meth-

ods, as well as the proposed OMPGS in the study.

1. Stochastic Greedy Search (SGS) [20]: SGS selects randomly a

subset of attributes as the candidate of the greedy search in each

iteration. Compared to FSGS, SGS is more efficient since it doesn’t

traverse every unselected attribute. As a price to pay, the approxi-

mation ratio of SGS degrades.

2. Graident-based Attack (GradAttack) [24]. It follows the same

attack objective definition in Eq. (1) and also uses gradients to

guide the attribute selection. However, it only considers the new

attributes contributing largest marginal gain. According to Eq.1, it

only searches a subset of the potentially feasible candidates, which

inevitably cause loss of approximation quality.

3. OMPGS-Rand, a variant of OMPGS. It selects randomly one

attribute from those with largest gradient magnitude in each itera-

tion. It borrows the random sampling spirit from SGS to reduce the

computational cost. It is evaluated to demonstrate the necessity of

combining the gradient’s guidance and the greedy search.

4. FSGS. It is presented in Algorithm 1.

Comparison of these methods to our proposedOMPGS targets on
1) showing the computational efficiency and attack performances

of our proposed OMPGS; and 2) the attackability of an evasion at-

tack task is independent from the choice of specific attack methods.

It depends on the functional characteristics of the classifier and

the characteristics of the data on which the classifier is applied.

For SGS and OMPGS, we vary the number of attributes k in the

candidate set in each iteration (k=2,4,6,10 in Table.1 and Table.2).

Higher k indicates a larger exploration range of greedy search, thus

usually brings better attack performances. In contrast, GradAttack

prefers smaller k. In each iteration, GradAttack selects k candi-

dates of greatest gradient magnitudes. It is designed to traverse all

possible combinations of the k attributes and take the best combi-

nation. Larger k usually introduces unnecessary attribute changes

or changes with adverse effects on attack.

Benchmark Metric We measure Accuracy Score, F1 score
andAUC score to evaluate the usability of the trained LSTM-based

classifiers. To illustrate the computational efficiency of different

methods, we force all the methods except FSGS to halt after 60s

and compare the success rate (noted as SR) of evasion attacks.

Higher SR denotes faster attack. We allow FSGS to run for 3600s

and report the metrics after it stops. Furthermore, we record the

average number of attribute (ANC) and the average number
of iteration (AI ) of each method to achieve the attack goal. Both

metrics are used to measure attack efficiency. Note thatANC does

not necessarily equal to AI. According to Eq. (1), maximizing the

set function based attack objective is not obliged to increase the

support set S in each iteration. A successful evasion attack with

lower ANC indicates better preserving data integrity, thus more

invisible to data sanitary check. ANC is thus the most important

indicator measuring effectiveness of attack methods. In contrast,

AI is used to show the computational cost, as more iterations

require more objective function evaluations. More details about the

datasets and experimental set up can be found in the supplements.

5.3 Results on IPS and EHR Datasets
Table 1 and Table 2 illustrate the performances of all the attack

methods on the 3 LSTM models. Table 3 and Table 4 show the
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Table 2: Attack Performances on EHR dataset

Model Attack Confidence = 0.5

Attack Algorithm

k = top 2 k = top 4 k = top 6 k = top 10

ANC ↓ AI ↓ SR ↑ ANC ↓ AI ↓ SR ↑ ANC ↓ AI ↓ SR ↑ ANC ↓ AI ↓ SR ↑

LSTM

SGS 3.65 5.13 0.10 3.35 4.72 0.14 2.98 4.07 0.12 3.63 5.19 0.25

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 3.06 1.84 0.98 4.26 1.27 0.99 5.30 1.06 0.98 6.35 1.00 0.98

OMPGS-Rand 2.38 2.45 0.97 2.58 2.73 0.97 2.85 3.06 0.97 2.91 3.25 0.97

OMPGS 2.06 2.08 0.98 1.92 1.94 0.98 1.89 1.91 0.98 1.82 1.83 0.98

LSTM-Noise

SGS 4.43 6.5 0.06 3.79 5.59 0.09 3.28 4.68 0.08 2.78 3.48 0.07

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 3.74 2.74 0.97 5.03 1.40 0.97 5.81 1.08 0.97 8.4 1.0 0.97

OMPGS-Rand 3.21 3.30 0.97 3.47 3.67 0.97 3.67 3.90 0.97 3.90 4.24 0.96

OMPGS 2.97 3.00 0.98 2.96 3.0 0.98 3.01 3.05 0.98 3.06 3.12 0.98

LSTM-Sub

SGS 4.61 6.82 0.45 4.25 6.18 0.48 3.66 0.48 0.44 3.46 4.78 0.45

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 1.96 1.79 0.99 3.48 1.11 0.99 5.01 1.03 0.99 7.67 1.00 0.99

OMPGS-Rand 1.91 1.98 0.98 2.21 2.33 0.98 2.32 2.52 0.98 2.52 2.83 0.98

OMPGS 1.64 1.67 0.99 1.44 1.46 0.99 1.47 1.50 0.99 1.47 1.48 0.99
Attack Confidence = 0.7

LSTM

SGS 4.56 7.32 0.15 4.36 6.46 0.16 4.14 6.02 0.16 4.18 6.37 0.28

FSGS ANC = 1.00 AI = 1.00 SR = 1.00

GradAttack 3.27 2.01 0.98 4.33 1.28 0.99 5.44 1.15 0.99 6.28 1.0 0.97

OMPGS-Rand 2.55 2.64 0.97 2.81 2.98 0.96 2.98 3.23 0.97 3.25 3.58 0.97

OMPGS 2.31 2.32 0.98 2.05 2.06 0.98 2.02 2.05 0.98 2.02 2.05 0.98

LSTM-Noise

SGS 5.16 7.58 0.10 4.35 6.45 0.08 4.30 6.69 0.10 4.09 6.23 0.17

FSGS ANC = 1.00 AI = 1.20 SR = 1.00

GradAttack 3.86 2.74 0.97 5.35 1.53 0.97 6.03 1.10 0.97 8.57 1.00 0.96

OMPGS-Rand 3.36 3.47 0.97 3.88 4.09 0.97 3.90 4.16 0.97 4.22 4.54 0.94

OMPGS 3.15 3.20 0.97 3.16 3.21 0.97 3.18 3.24 0.98 3.23 3.33 0.98

LSTM-Sub

SGS 5.19 8.00 0.55 4.97 7.62 0.63 4.55 6.83 0.54 4.13 6.11 0.54

FSGS ANC = 1.03 AI = 1.04 SR = 1.00

GradAttack 1.94 1.55 0.98 3.36 1.12 0.99 5.02 1.01 0.98 7.63 1.00 0.99

OMPGS-Rand 2.03 2.08 0.98 2.31 2.47 0.98 2.48 2.73 0.98 2.63 2.99 0.98

OMPGS 1.78 1.82 0.99 1.60 1.63 0.99 1.55 1.56 0.99 1.56 1.57 0.99

Table 3: Usability of the classifier on IPS dataset
Classifier Accuary Macro F1 AUC
LSTM 0.9597 0.9432 0.9872

LSTM-Noise 0.9668 0.9533 0.9870

LSTM-Sub 0.8867 0.8687 0.9204

Table 4: Usability of the classifier on EHR dataset
Classifier Accuary F1 AUC
LSTM 0.9321 0.8831 0.9096

LSTM-Noise 0.9277 0.8710 0.8948

LSTM-Sub 0.9295 0.8730 0.8944

classification accuracy of different LSTM-based classifiers on both

datasets. We can summarize the observations as follows:

First, the utility scores indicate the usability of the real-world

classification tasks. It is not surprising to see that LSTM enjoys the

highest accuracy on both datasets. In contrast, LSTM-Sub, due to
the positiveness constraint, performs relatively poorly. As expected,

truncation noise doesn’t impact much the classification of LSTM-
Noise thanks to the highly redundant network architecture.

Second, LSTM-sub is easier to attack (ormore "attackable")
than LSTM and LSTM-Noise, because it needs the least number

of attribute changes and objective function queries. This observa-

tion confirms what we reveal earlier: for evasion attack on discrete
data, a better regularized and bounded function form of the targeted
classifier can improve the attackability of the evasion attack task. In
contrast, attack against LSTM-Noise is slightly easier than LSTM on

IPS data set but significantly more difficult on EHR data set. The

explanation behind the inconsistency is as follows. The classifier

becomes generally less smooth due to the truncation noise, which

hence makes the corresponding attack objective further from strict

submodularity. As a result, the attack performances against LSTM-
Noise become less tightly bounded by the regularity of the classifier

according to Theorem 1, while more data-dependent.

Third, FSGS runs slowly on both datasets, while presents the

best attack performances. This observation is highly consistent with

the quality bound of FSGS given by Theorem 2. FSGS can provide

the superior approximation quality over any greedy-search based

variant, no matter whether the attack objective is submodular or

weakly-submodular. Both SGS and GradAttack improve computa-

tional complexity by reducing the number of candidate attributes

in each iteration. Nevertheless, they don’t consider explicitly how

to minimize the loss of the quality of the solution.

Last, our proposed OMPGS method always has high success
rate and finds quickly the valid attacks (1-2 changes to make in

one instance), because it combines themerit of orthogonal matching

pursuit (OMP) and greedy search. On one hand, OMP helps to

narrow down the greedy search to the attributes that are the most

likely to be useful in the attack. On the other hand, OMPGS still

conducts greedy search to explore the feasible subset of attributes

improving the attack objective. OMPGS provides a good trade-off

between exploration and exploitation in this sense. Without greedy

search, the attack performances of OMPGS-Rand are significantly

worse than OMPGS. It confirms further the necessity of integrating

OMP-based guidance and greedy exploration to deliver a fast while

effective search in the attribute space.

5.4 Sensitivity of the Selected Attributes
For each data set, we conduct one-factor-at-a-time sensitivity analy-

sis [4] over the discrete attributes. Given a data instance, we change
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each attribute while keeping all the others fixed. The averaged

change of the probabilistic classification output over all the testing

instances is used as the attribute-wise sensitivity measurement. A

larger average change indicates that the classifier’s output is more

sensitive to the change over the corresponding attribute. Following

Eq.9, we launch OMPGS based attack against LSTM-Sub on both

datasets. The attack spins till the goal, Attack Confidence= 0.5, is

reached.

For attacking LSTM-Sub, we finally select 5 attributes on IPS data

and 7 attributes on EHR data. On IPS data set (1103 attributes), 3
of the 5 attributes also appear as the top 50% sensitive attributes.

Especially, 2 of them are ranked as the top 12% sensitive attributes.

On EHR data set (4130 attributes), 5 of the 7 attributes show up in

the list of the top 50% sensitive attributes. Furthermore, 3 of them

are ranked as top 12% sensitive attributes. The interesting overlap-

ping between the attributes useful for attack and the top-ranked

sensitive attributes confirms our intuition about stability of the

classification model. Though highly sensitive attributes can help

better capture difference between different classes, they can also

increase adversarial vulnerability of the classifier [37]. Moreover,

the observation unveils that evasion attack can also be used to ex-

ploit the statistical characteristics (e.g. attribute sensitivity) of the

training data of the classification system. It can not only harm us-

ability of the classifier, but also steal privacy-sensitive information

of the training data.

6 CONCLUSION
In this paper, we explore attackability guarantees of evasion attack

against a targeted classifier on discrete input. We unveil the regu-

larity constraints over the function form of the targeted classifier.

Despite of the general NP-hard complexity, evasion attack targeted

at a classifier bounded by the constraints enjoys the approximately

diminishing return property of weak submodularity. It can thus de-

liver an efficient attack via fast greedy search and provide provable

attack performances. Furthermore, following the framework of the

attackability study, we propose an orthogonal matching pursuit

guided greedy search to achieve a good balance between economic

candidate attribute search and efficient attack. Both theoretical and

empirical study confirm the merits of the proposed method. For a

classifier with discrete inputs, our work reveals theoretically a link

between functional characteristics of the classification function and

its adversarial vulnerability. Our study is thus useful for improving

robustness of the classifier facing hostile adversarial threats.
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A DATASET INFORMATION
We include two datasets collected from real-world classification

applications on cyber security and electronic medical service,
as summarized as follows:

Intrusion Prevention System Dataset (IPS). Modern cyberat-

tacks have reached high levels of complexity. An attacker who is

trying to compromise a computer system has to perform a series

of attack steps (i.e., reconnaissance, exploitation, and persistence)

to achieve such goal. For each of the attack steps, attackers have a

choice of executing a series of malicious actions, such as exploiting

Apache Struts or exploiting Wordpress file download , which are

usually scripted and automated. We collect one day of IPS records

from 242,467 endpoint devices containing 29,641 time series of at-

tack events. Each sequence instance is composed by 20 attack steps.

On each attack step, the attacker can choose one of 1103 different

malicious actions registered as highly threatening ones. Thus one

data instance of IPS data is given as x ∈ R20∗1103∗70 according to

the definition given in Section.3. Each of the 1103 malicious actions

is projected to a 70-dimensional embedding vector. In our study,

each sequence instance is used as input to the classification system,

which predicts the most likely attack operation conducted at the im-

mediately successive step of the sequence. Based on the prediction

output, security analysts can proactively take prevention actions.

We focus on predicting the occurrence of the two most threatening

actions related to recently uncovered vulnerability. We thus study

a 3-class classification task: the 2 highly malicious actions and all

the others as the third class.

Electronic Health Records (EHR) [13]. The real-world EHR

dataset consists of time-ordered medical visit records of 7314 pa-

tients. Each patient has from 4 to 200 medical visits. Each visit

record is composed by a subset of 4130 discrete ICD9 diagnosis

codes
3
. Each diagnosis code represents occurrence of a disease, a

symptom, or an abnormal finding. Using the historical EHR data

of patients, we can predict the risk of patients suffering the target

diseases. In this experiment, our target is a binary classification

task: we forecast whether a patient will suffer heart failure disease

in the future. In our experiments, a data instance of EHR data set is

organized as a tensor x ∈ R200∗4130∗70 with each of the 4130 diagno-

sis codes projected to a 70-dimensional embedding vector. For the

patients with less than 200 visits, we pad the empty observations

by setting the corresponding b
j
i = 0.

We split randomly each dataset into 3 non-overlapped subsets

for training, testing and evaluating the attack performances. For

IPS data, 21,214 and 7,427 sequence instances are used to train

and evaluate the classification accuracy of the classifier. The left

1,000 instances are used for benchmarking the performances of the

evasion attack. On IPS data, we focus on the adversarial attribute

change by replacing the original action at a given attack step with

a new action. For EHR data, we use 5,679 and 1,135 patient visit

instances to train and test the classifier. The rest 500 visit instances

are used to attack. As the diagnosis code in each visit instance is

binary, we conduct the attack by simply flipping the codes.

3
http://www.icd9data.com/

B EXPERIMENTAL SETUP
We instantiate the attackability study to a popularly adopted RNN

based classifier, standard Long Short-Term Memory (LSTM) model

in the experiments. Without loss of generality, we use Tanh ac-

tivation function in the LSTM classifier and exclude the dropout

module. Theorem.1 applies to LSTM similarly as the simpler RNN

architecture. To demonstrate the link between the regularity of

the classifer and its attackability, we train three LSTM classifiers

following different regularity constraints for each dataset. First, we

use the standard LSTM mode without any additional constraints

over the models’ parameter. According to Corollary 2.1, the evasion

attack objective targeted at the classifier is weakly submodular

with low submodularity ratio. This classifier is referred as LSTM in

the experiments. Similarly, we enforce the positiveness constraints

on the classifier proposed in [24]. The resultant LSTM is strictly

submodular according to Corollary 2.2. It is noted as LSTM-Sub in
the followings. Though LSTM and LSTM-Sub share the similar level

of smoothness, the activation function of LSTM-Sub is truncated to

be positive and thus presents strongly concavity. In contrast, the

activation function of LSTM is convex on the negative input and

in general is not concave any more. As shown by Defintion.1, the

regularity parameterm of LSTM-Sub is large than that of LSTM. In

other words, LSTM-Sub is more regularized than LSTM. We compare

the attack performances against them to confirm our theoretical

discussion and intuition: more regularized and bounded classifier

is easier to be attacked with greedy-search based methods. Fur-

thermore, we add additional parameter perturbations to LSTM by

parameter truncation: any parameters with their values less than

-1 are truncated and assigned randomized positive values. As per

our empirical observation, most of LSTM’s parameters are larger

than -1. Therefore, the parameter perturbation causes little changes

of classification performances. But it can reduce the classifier’s

smoothness as the randomized parameter perturbation introduces

unpredictable change to the first-order derivative of the classifier.

We refer the noisy version of LSTM as LSTM-Noise. Comparing at-

tack performances against LSTM and LSTM-Noise can demonstrate

further that attackability of a less consistently regularized classifier

is more difficult to be estimated.

The evasion attack task on IPS data is non-targeted. We aim at

mis-classifying the attack sequence to any of the two classes other

than the true class label. The evasion attack on EHR data simply

flips the binary classification output. To show how the attack meth-

ods perform given different levels of attack difficulty, we require

each attack method to cause misclassification with a classification

probability of 0.5 and 0.7 respectively, as noted as Attack Confidence
Threshold in the results. We include 4 state-of-the-art greedy-search

based attack methods, as well as the proposed OMPGS in the study.

The purpose is two-fold. Firstly we involve the baselines for com-

parative study, in order to show the computational efficiency and

attack performances of our proposed OMPGS. Secondly, we show
that the attackability of an evasion attack task is independent from

the choice of specific attack methods. It depends on the functional

characteristics of the classifier and the characteristics of the data

on which the classifier is applied. Except FSGS, the other involved
baseline approaches are as follows:

http://www.icd9data.com/
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• Stochastic Greedy Search (SGS) [20]: SGS selects ran-

domly a subset of attributes as the candidate of the greedy

search in each iteration. Compared to FSGS, SGS is com-

putationally more efficient since it doesn’t traverse every

unselected attribute. As a price to pay, the approximation

ratio of SGS degrades, as shown in [20]. We believe that

the proposed OMPGS performs better. Benefited from the

gradient information used in OMPGS the candidate set of

the greedy search greatly shrinks while preserving attack

effectivity.

• Graident-based Attack (GradAttack) [24]. GradAttack
follows the same attack objective definition in Eq.1 and also

uses gradients to guide the attribute selection. However, it

only considers the new attributes contributing largest mar-

ginal gain with respect to the currently best combination

of attribute changes. According to Eq.1, GradAttack only

searches a subset of the potentially feasible candidates in

each iteration, which inevitably cause loss of approximation

quality of the attack solution.

Besides, we also involve a variant of OMPGS, named as OMPGS-
Rand. It works by selecting randomly one attributes from the at-

tributes with largest gradient magnitude in each iteration. It is

designed by borrowing the random sampling spirit from SGS to

reduce the computational cost. The purpose of involving OMPGS-
Rand is to demonstrate the necessity of combining the gradient’s

guidance and the greedy search within the candidate attributes.

For all the attack methods except FSGS, we vary the size of the

candidate attribute set for greedy search in each iteration from 2 to

10, noted as top2, top4, top6 and top10. We implement all the attack

methods and the 3 LSTM based classifiers using the Python library

PyTorch and conduct all the experiments on Linux server with 2

GPUs (GeForce 1080Ti) and 16-core CPU (Intel Xeon).

We release the source codes for experimental study at

https://github.com/X8GWRFJT/Attackability-Characterization-

of-Adversarial-Evasion-Attack-on-Discrete-Data.

https://github.com/X8GWRFJT/Attackability-Characterization-of-Adversarial-Evasion-Attack-on-Discrete-Data
https://github.com/X8GWRFJT/Attackability-Characterization-of-Adversarial-Evasion-Attack-on-Discrete-Data
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