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Abstract

For federated learning systems deployed in the wild, data
flaws hosted on local agents are widely witnessed. On one
hand, given a large amount (e.g. over 60%) of training data
are corrupted by systematic sensor noise and environmental
perturbations, the performances of federated model training
can be degraded significantly. On the other hand, it is pro-
hibitively expensive for either clients or service providers to
set up manual sanitary checks to verify the quality of data
instances. In our study, we echo this challenge by propos-
ing a collaborative and privacy-preserving machine teaching
method. Specifically, we use a few trusted instances provided
by teachers as benign examples in the teaching process. Our
collaborative teaching approach seeks jointly the optimal tun-
ing on the distributed training set, such that the model learned
from the tuned training set predicts labels of the trusted items
correctly. The proposed method couples the process of teach-
ing and learning and thus produces directly a robust predic-
tion model despite the extremely pervasive systematic data
corruption. The experimental study on real benchmark data
sets demonstrates the validity of our method.

Introduction
Federated learning is well known for its vulnerability to ab-
normal behavior of individual computing agents (Yang et
al. 2019). The anomaly is caused by unreliable computing
devices, communication jams or flaws existing in the lo-
cal training data sets. Our study focuses on the impact of
pervasive training data flaws, where a significantly large
fraction of the local data sets (e.g. over 60%) are contami-
nated by systematic noise corruption, such as non-iid fea-
ture corruption and asymmetric label flipping noise. In
real-world distributed data analytic applications, such train-
ing data flaws are widely witnessed due to malfunction of
data collectors, crowd-sourcing and intentional adversarial
attacks from hacked / untrustworthy participating devices.
On one hand, the severe noise corruption can deeply de-
teriorate learning performances. On the other hand, man-
ual inspection and verification of each data instance is usu-
ally expensive thus unrealistic for both clients and service
providers to conduct pre-training data quality check. De-
ployment of the existing federated training method with the
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pervasive data flaws carries a threat to the accountability of
data analytic service.

Recent robustification efforts improve resilience to
Byzantine failure (Chen et al. 2018a; Chen, Su, and Xu
2017; Yin et al. 2018; Xie, Koyejo, and Gupta 2018b;
2018a; Alistarh, Allen-Zhu, and Li 2018; Su and Xu 2019;
Blanchard et al. 2017; Ghosh et al. 2019; Li et al. 2018).
They assume that the majority of local agents behave nor-
mally and consider the Byzantine machines as statistical out-
liers. Robust estimation is then applied to suppress the neg-
ative impact of Byzantine machines in model/gradient av-
eraging. Nevertheless, given the pervasive systematic data
flaws, the profiles of the distributed training data set can be
drastically twisted. Furthermore, the robust estimation is ap-
plied based on the assumption over data distribution, such as
long-tailed distribution. However, due to the privacy regula-
tion of federated learning, prior knowledge about the noise
distribution on local agents is barely available. The robust
estimation based approaches thus become less effective in
this challenging scenario.

We propose to mitigate the adverse impact of the per-
vasive systematic data corruption in federated training via
Collaborative Machine Teaching, thus named CoMT. At
the core of CoMT, the local agents act as distributed teach-
ers, while the central parameter server is the learner co-
taught by the distributed teachers. Besides the corrupted
training data, each teacher also hosts a few trusted data in-
stances, e.g. verified by domain experts, to guide the teach-
ing process. The teachers are organized to jointly tune the
corrupted training data set, such that the model learnt with
the tuned training set by the learner predicts consistent tar-
gets as the trusted instances. More specifically, we adopt two
types of training data tuning operations: crafting the train-
ing instances and subset-selecting the training set. The set
of the trusted data instances are small in size, e.g. 1/100
of the training data. They are thus insufficient for learning
by themselves. The merits of the trusted instance-directed
training set tuning are three-fold. First, the training set tun-
ing requires no assumption on noise distribution. Compared
to the robust-statistics based methods, the assumption-free
method reduces the risk of miss-estimating noise corruption
due to lack of prior knowledge of noise distribution. Second,
the trusted instances acts as weak supervision. The teaching
activity with a learning-performance directed objective en-



courages the training data tuning efforts to help recover the
underlying feature-label relation. Furthermore, our method
couples federated teaching and learning in the joint opti-
mization process, which produces the learned model as out-
put directly. Finally, we define the objective function of the
teaching collaboration based on the dual form of the learn-
ing paradigm of the learner. It facilitates designing a privacy-
preserving and efficient optimization subroutine with block
coordinate descent. Training instances of one teacher never
leave the hosting machine and are not accessible by the other
teachers during the optimization process.

Related Work
Byzantine-robust federated learning has received increas-
ing attention in recent years. Most existing algorithms as-
sume that data are independent and identically distributed
(i.i.d.). Local model updates computed by normal machines
are around the true gradient, while those sent from the
Byzantine machines or malicious adversary agents (Bhahpji
et al. 2018; Chen et al. 2018a) are outliers. Robust statis-
tics, e.g. median-based and weighted-based aggregation, are
applied on the central parameter server to achieve noise-
tolerant learning. The works along this direction include ge-
ometric median (Chen, Su, and Xu 2017), marginal trimmed
mean (Yin et al. 2018; Xie, Koyejo, and Gupta 2018b), di-
mensional median (Xie, Koyejo, and Gupta 2018a; Alis-
tarh, Allen-Zhu, and Li 2018) and iterative filtering (Su and
Xu 2019). A more sophisticated algorithm named as Krum
(Blanchard et al. 2017) selects a gradient with minimal sum-
mation of Euclidean distances from a given number of near-
est gradients. Recent study (Ghosh et al. 2019; Li et al. 2018)
study Byzantine attack against federated learning systems
with heterogeneous data distributions. (Ghosh et al. 2019)
proposes to perform clustering of local agents based on the
expected risk minimizers derived on each agent. Training
data within each cluster have more homogeneous distribu-
tional characteristics. The robust aggregation approaches,
e.g. geometric median, is then applied in each cluster. (Li et
al. 2018) maintains stochastic gradient calculation on both
local agents and the master. It pursues to minimize the sum
of L1-norm distance between local estimates of model pa-
rameters and that derived on the master, which limits the
influences of Byzantine machines.

Machine teaching (Goldman and Kearns 1995) proposes
an inverse problem to machine learning: how does a teacher
construct a training data set to help a learner achieve the
teaching goal? Most of the pioneering works (Liu, Zhu, and
Ohannessian 2016; Zhu 2013) focus on studying a key quan-
tity called the teaching dimension, i.e., the size of the mini-
mal training set that is guaranteed to teach a target model to
the learner. Later works consider other variants of teaching
setting, e.g.,in (Zilles et al. 2011; Balbach 2008), the learner
and the teacher are allowed to cooperate in order to achieve
better teaching performance. More theoretical studies about
machine teaching can be found in (Doliwa et al. 2014;
Chen et al. 2018b; Haug, Tschiatschek, and Singla 2018;
Liu et al. 2017b; 2017a). Our work is aligned with Super
Teaching (Ma et al. 2018) and Learning to Teach (Fan et
al. 2018) on selecting training instances. Another closely

related work is Debugging Using Trusted Items (DUTI)
(Zhang, Zhu, and Wright 2018). DUTI defines training data
flaws as noise corruption over the labels/targets of the train-
ing data. Teaching task of DUTI is to inject the minimal
changes to the training targets, such that the trained model
predicts consistent output with the trusted instances. The
magnitudes of the the injected crafting efforts are then used
to flag potential corrupted targets. Main limits of the previ-
ous machine teaching methods lie in three folds. First, they
focus on theoretical teachability study with toy scenarios,
e.g. how to make the learner learn the specified parameter
values with tuned training data. They are thus not practi-
cally useful, as the parameter values of the target model are
barely known. In contrast, the proposed CoMT produces di-
rectly an applicable prediction model. Second, the previous
works involve only one teacher. Few effort has been engaged
to study how to organize collaboration between distributed
teachers and protect data privacy of each teacher simultane-
ously. The proposed CoMT achieves both goals via a block
coordinate descent based optimization method. Finally, pre-
vious machine teaching methods suffer from intense com-
putation for solving a bi-level stackelberg game (Brückner
and Scheffer 2011) with non-linear programming or combi-
natorial optimization techniques. Benefited from the parallel
block coordinate descent method, we can organize the teach-
ing collaboration efficiently

Collaborative Machine Teaching with Trusted
Instances

Assuming that there are K teachers, each of them hosts a
buggy training set {(Xk

i , Y
k
i )}i=1:nk

.Xk and Y k denote the
features and labels of one local training set. In addition, we
assume that each agent provides a small portion of trusted
data instances {(X̃k

i , Ỹ
k
i )}i=1:mk

, where mk � nk. The
proposed collaborative teaching is defined as a bi-level opti-
mization problem:

min
X′,Y ′,bk:k∈[K]

K∑
k=1

nk∑
i=1

bki {dx(X ′ki , X
k
i ) + dy(Y ′ki , Y ki )}+ λb|b|

s.t. θ̂∗ = arg min
θ̂

K∑
k=1

nk∑
i=1

bki `(θ̂, X
′k
i , Y

′k
i ) + λΩ(θ̂),

bki = {0, 1}, fθ̂∗(X̃
k
i ) = Ỹ ki , fθ̂∗(X

′k
i ) = Y ′ki

(1)

where dx measures Euclidean distance between the changed
feature X ′ki and Xk

i . dy denotes Euclidean distance (for re-
gression) or hamming distance (for classification) between
Y ′ki and Y ki . |b| denotes L1-norm of b.

∑
k,i `(θ̂, X

′k
i , Y

k
i )+

λΩ(θ̂) denotes the regularized learning paradigm A of the
learner to train the model f parameterized by θ̂. Minimizing
Eq.1 simultaneously selects an informative subset of training
data and inject the minimum changes into the the selected
data instances. The tuned training subset is used to conduct
federated training with the learning paradigm A. The learnt
model f should predict consistent labels on both trusted in-
stances and the tuned training data.



As bki is binary, directly solving Eq.1 reduces to a mixed-
integer non-linear constraint problem (MINLP). In the worst
case, the popular heuristic solver, such as Branch-and-
Bound method, has an exponential time complexity thus
becomes prohibitively expensive given large-scale training
data. Solving a MINLP problem with distributed players is
even more difficult due to the privacy concern. It usually
needs a central processor to access the data of local ma-
chines (Karabulut 2017), which violates the privacy regula-
tion. Besides, frequent synchronization between the central
process and the end-devices can cause severe latency given
a low-communication environment. We attack this issue by
reformulating the bi-level objective of CoMT with the dual
form of the learning paradigm A.

Dual form of the collaborative teaching
The dual objective of the learning paradigmA of the learner
gives as:

α∗ = arg min
α

K∑
k=1

nk∑
i=1

`∗(−αki ) +
λ

2
‖Zα‖2 (2)

where `∗ is the Fenchel dual of the loss function `. Let
n =

∑K
k=1 nk denote the total number of training instances

owned by the teachers. Z ∈ Rd∗n denotes aggregated data
matrix with each column corresponding to a data instance.
The duality comes with the mapping from dual to primal
variable: ω(α) = Zα according to the KKT optimality con-
dition. Each αki as the dual variable corresponding to the
ith data instance hosted by teacher k. If αki diminishes to
zero, the corresponding data instance Zki consequently has
no contribution to the dual objective in Eq. (2). Thus, only
the data instances with non-zero αki dominates the training
process. Motivated by this observation, we can reformulate
Eq.1, the objective of the proposed collaborative teaching
method following Eq.3:

α,Z′ = arg min
αk
i ,k∈[K],Z′

1

n

K∑
k=1

nk∑
i=1

`∗(−αki , Z′) +
λ

2
‖Z′α‖2

+ λt
1

m

K∑
k=1

mk∑
i=1

`(X̃k
i , Ỹ

k
i , Z

′α) + λZ‖Z′ − Z‖2 + λα

K∑
k=1

|αk|

(3)

where λt balances the impact of the trusted data instances
in the joint optimization process. Larger λt sets more strict
constraints over the consistency between the learned model
and the trusted data. λα is the regularization weight of the
adaptive l1-norm penalization enforcing sparsity of α to per-
form the subset selection. λZ penalizes the teaching efforts
applied to the corrupted training data. An appropriately cho-
sen λZ prevents too much artefacts introduced to the tuned
training instances, while still enables the tuning flexibility to
deliver efficient teaching. The teaching collaboration defined
by Eq. (3) is convex according to the property of Legendre-
Fenchel transform. Thus solving Eq. (3) with gradient de-
scent guarantees fast convergence. As we enforce a sparsity
regularization over α, the magnitudes of the non-zero en-
tries of α can be used to select training instances to calculate

the model parameters. We next demonstrate how to apply
the proposed CoMT method to two prevalent learners, L2-
regularized Logistic Regression (LR) and Ridge Regression
(RR).

CoMT for Ridge Regression and Logistic
Regression
We instantiate CoMT with Ridge Regression as the learner
by inserting the dual form of Ridge Regression into Eq.3, as
given as follows:

α∗,k, β∗,kx,y = arg min
αk,βk

x ,β
k
y

1

2λw

K∑
k=1

‖(Xk + βkx)αk‖2 +
1

2

K∑
k=1

‖αk‖2

−
K∑
k=1

αk,T (Y k + βky ) + λt

K∑
k=1

‖X̃k 1

λw
(

K∑
k=1

(Xk + βk)αk)− Ỹ k‖2

+ λα

K∑
k=1

|αk|+ λZ

K∑
k=1

(‖βkx‖2 + ‖βky‖2)

(4)

where λw is the regularization parameter over the regres-
sion coefficients w in ridge regression. βkx and βky denote the
teaching crafting on the feature and target of each training
data instance. The magnitude of each element in αk mea-
sures proportionally the contribution of each training data
instance hosted by one teacher in learning. The first three
terms of Eq.4 enforce the consistency between the learned
regression parameter w and the changed training data in-
stances (Xk + βk) and Y k. They are derived as the dual
definition of Ridge Regression. The forth term enforces the
consistency of the learnt model with the trusted instances.
Similarly, CoMT for L2-regularized Logistic Regression in
can be defined as in Eq.(5):

α∗, β∗ = arg min
αk,βk

K∑
k=1

nk∑
i=1

(αki log(αki ) + (1− αki ) log(1− αki ))

+ λw‖w‖2 + λt

K∑
k=1

mk∑
i=1

log(1 + exp(−Ỹ ki wX̃k
i ))

+ λα

K∑
k=1

|αk|+ λZ

K∑
k=1

‖βk‖2 s.t. 0 < αki < 1

(5)

where w = 1
λw

∑K
k=1

∑nk

i=1 α
k
i (Zki + βki ). Benefited from

the dual form of LR, we apply the data crafting based teach-
ing directly on the classification margin of training instances
in Eq.5. It avoids the combinatorial optimization of tuning
the label Y ′. Instead, it solves a much easier L1-regularized
continuous programming problem. Note that CoMT can be
easily adapted to the case with non-linear kernel learners
by introducing random Fourier features (Rahimi and Recht
2007).

CoMT optimization
We design a privacy-preserving optimization subroutine to
solve the teaching collaboration defined by Eq.4 and Eq.5.
Our method is inspired by dual coordinate descent (Smith



et al. 2018) and Alternating Direction Method of Multiplier
(ADMM). In each round of the descent process, we conduct
minimization with w.r.t. αki and βki belonging to the k-th
local agent, while fixing all the other αk and βk. We take
CoMT for RR as an example. Similar process can be adapted
to LR.

We first reformulate Eq.4 with scaled ADMM, as shown
in Eq.6:

αk,∗, βk,∗x,y = arg min
αk,βk

x ,β
k
y

1

2λw

K∑
k=1

‖(Xk + βkx)αk‖2 +
1

2

K∑
k=1

‖αk‖2

−
K∑
k=1

αk,T (Y k + βky ) + λα

K∑
k=1

|αk|+ λZ

K∑
k=1

(‖βkx‖2 + ‖βky‖2)

+
ρ

2
‖θ̃ − w + u‖2

θ̃∗ = arg min
θ̃

λt

K∑
k=1

‖X̃kθ̃ − Ỹ k‖2 +
ρ

2
‖θ̃ − w + u‖2

u = u+ θ̃ − w
(6)

where w = 1
λw

(
∑K
k=1(Xk + βkx)αk). ρ > 0 is the aug-

mented Lagrangian parameter and u is the scaled dual vari-
able of ADMM. The pseudo codes of the optimization pro-
cedure are given in Algorithm 1.
αt,k and βt,k denote the value of the disjoint block

{αki , βki }i=1,..,nk
estimated at the t-th iteration. They cor-

respond to the data instances hosted by the k-th teacher. In
each round of iteration, we update the dual variables αt,k
and βt,k of each teacher in parallel. The incremental updates
∆αk and ∆βk are estimated based on the value of αt−1,k

and βt−1,k and minimize the linear local approximation to
Eq. (6). The updated αt,k and βt,k of each teacher are then
used to aggregate τ t. After that, we solve a quadratic pro-
gramming problem for each teacher to compute the local
update ∆θ̃k and take the average of them to update θ̃.

It is easy to find that: i) training data of any local teacher
never leave the hosting machine in the collaboration stage.
Furthermore, updating θ̃ only needs to aggregate local up-
dates on the learner to derive τ t and broadcast it back to the
teachers. The learner can barely reverse-engineer the statis-
tical profiles of the training data of local teachers with only
τ t and θ̃t. It prevents the risk of unveiling private data of
one local teacher to the learner or the other teachers. ii) In-
formation sharing between local teachers is conducted by
updating the global variable θ̃ and τ in Algorithm.1. Com-
munication for teaching and learning collaboration is thus
efficient, with the cost of O(Kd + nd) in each round of it-
eration. Moreover, according to (Jaggi et al. 2014), updat-
ing αk of local teachers can be triggered with asynchronous
parallelism, which allows to organize efficient collaboration
of teaching and learning with tight communication budget.
Note that most entries of α are tuned to be close to zeros. We
identify the data instances corresponding to the entries of α
with the largest non-zero magnitudes. Only the selected data
instances are used to calculate the model parameter. Once
αk and βk are derived, we can obtain the model parame-

Data: Buggy training data
{Xk

i , Y
k
i }k=1,...,K,i=1,...,nk

and the trusted
data {X̃k

i , Ỹ
k
i }k=1,...,K,i=1,...,mk

hosted by K
teachers

Input: T ≥ 1 as the maximum iteration steps, scaling
parameter 1 ≤ γk ≤ K, by default γk = 1. ρ
= 1e2 as the augmented Lagrangian multiplier

Output: αT,ki , βT,ki , k = 1, 2, ...,K, i = 1, 2, ..., nk
Initialize: Set α0,k

i = 0 and β0,k
i = 0 for all K

machines. θ̃(0) = 0 and u0 = 0
for t = 1 to T do

for all teachers k = 1, 2, 3, ...,K in parallel do
∆αk,∗,∆βk,∗ =

arg min
∆αk,∆βk

1
2λw
‖(Xk+βt−1,k+∆βk)(αt−1,k+

∆αk)‖2 + 1
2‖α

t−1,k + ∆αk‖2 − (αt−1,k +

∆αk)TY k + λα|αt−1,k + ∆αk|+
λZ‖βt−1,k + ∆βk‖2 + ρ

2‖θ̃
t−1 − 1

λw
(Xk +

βt−1,k + ∆βk)(αt−1,k + ∆αk) + ut−1‖2
αt,k = αt−1,k + γk

K ∆αk

βt,k = βt−1,k + γk
K ∆βk

end
Reduce on the central parameter server
τ t = 1

λw

∑K
k=1

∑nk

i=1 α
t,k
i (Xk

i + βt,ki )

Broadcast τ t to all K teachers
for all K teachers k = 1, 2, 3, ...K in parallel do

∆θ̃k = arg min
∆θ̃

λt‖X̃k(θ̃ + ∆θ̃k)− Ỹ k‖2

+ρ
2‖(θ̃ + ∆θ̃k)− τ t + ut−1‖2

end
Reduce on the central learner
θ̃t = θ̃t−1 + 1

K

∑K
k=1 ∆θ̃k

Update on the central learner
ut = ut−1 + θ̃t − τ t

Broadcast θ̃t and ut to all K teachers
end
Algorithm 1: Block-Coordinate Descent for CoMT

ter as 1
λw

∑K
k=1

∑
ĩ∈Sk

αk
ĩ
(Xk

ĩ
+ βk

ĩ
), with Sk as the set of

selected training instances of the teacher k.

Empirical Study
We involve the following baseline approaches in the study:

• TI-only and TI-Noise uses only the trusted instances and
both trusted and corrupted training data of by each teacher
to conduct model training. We include them to confirm
that the proposed machine teaching method can extract
useful information from buggy data for training

• DUTI (Zhang, Zhu, and Wright 2018) is the most relevant
with our work. In this study, each individual teacher runs
DUTI independently with his own local data set. After
that, the tuned local training data sets of all the teachers
are used for federated model training. As DUTI is not de-
signed for distributed computing, we use this setting to be



aligned with the federated learning scenario, where nei-
ther the central server nor any of the local teacher is able
to access the whole data set.

• REWLS (Gervini and Yohai 2002),RloR (Feng et al.
2014) and rLR (Bootkrajang and Kaban 2012) are robus-
tified ridge regression and logistic regression. REWLS is
a weighted least square estimator with the weights adap-
tively calculated from an initial robust estimator. RloR and
rLR are robust against outliers with feature and label noise
respectively. We use them as the baselines with robust loss
functions. We apply them on each local teacher indepen-
dently to derive local parameter estimate. These local es-
timates are aggregated to derive model parameters.

• GeoMed (Chen, Su, and Xu 2017) and RSA(Li et al.
2018) are robust stochastic gradient based optimization
methods. Both methods gain significant robustness im-
provement to Byzantine machines according to (Li et al.
2018). They compute robust estimation of model update
using noise-biased stochastic gradients calculated by each
local machine. In the following experiments, we use them
with the standard learning objectives of ridge regression
and L2-regularized logistic regression.
DUTI, REWLS, RloR, rLR, GeoMed and RSA are trained

with the trusted instances and the corrupted data. For DUTI,
we choose a sequence of sparsity parameters to generate a
series of flagged buggy data sets, until the size of the union
of these sets exceeds the examination budget. The parame-
ters of REWLS, RloR and rLR are chosen according to the
ratio of the buggy instances in the training data. The hyper-
parameters of GeoMed and RSA are chosen as suggested in
(Chen, Su, and Xu 2017) and (Li et al. 2018). 4 large-scale
real-world data sets with different application contexts are
used to benchmark the involved algorithms (summarized in
Table.1)(Chang and Lin 2011). Without loss of generality,
we fix the number of teachers K to 5 and assume that each
teacher hosts the same number of training instances. For
each real-world data set, we first randomly extract 60% of
the whole data set as the training data. These training data
are corrupted to generate buggy training data. Similarly, for
each data set of CPUSMALL, ABALONE and IJCNN, we
choose η = 1.0% and η = 5.0% of the whole data set as the
trusted instances. For SUSY, training with trusted instances
more than 1% of the data set can achieve similar AUC scores
as that derived with the ground truth of the training data.
Therefore, we set η as 0.1% and 0.5%. These buggy training
data and the trusted instances are assigned to the K teach-
ers uniformly. It is worth noting that we uniformly assign
data to different teachers only to avoid unnecessarily sophis-
ticated experimental setting. In addition, according to Eq.4
and Eq.5, it is not obliged to have every teacher provide the
trusted instances. Only the number of the trusted instances
matters in seeking the optimal teaching efforts. To tune the
parameter λt, λα and λZ , we adopt 10% of the data as the
validation set. The rest of the data instances are used to eval-
uate the performances of the learned model. For regression
test, we follow Eq.7 to add random noise to the feature vec-
tor and regression target of each training instance:

Xi = X̂i + ϑx, Yi = Ŷi + ϑy (7)

Table 1: Summary of 4 real-world benchmark datasets.
Dataset No. of Instances No. of Features
IJCNN 49,990 22
SUSY 50,000 18

CPUSMALL 8,192 12
ABALONE 4,177 8

where X̂ and Ŷ are the original feature and target of the
training instances. ϑx and ϑy are the injected noise following
normal distribution. We normalize the values of each feature
dimension in X̂ between −1 and +1. For each teacher, we
sample uniformly the mean of ϑx between −5 and +5 and
the mean of ϑy between−2.5∗avg(|yi|) and 2.5∗avg(|yi|)
respectively, where avg(|yi|) denotes the average absolute
value of the target Ŷi. We vary the variances of ϑx and
ϑy , noted as δx and δy , to change the strength of the in-
jected noise. This setting is used to simulate non-iid system-
atic noise. In the classification test, we follow Eq.7 to add
the systematic feature corruption to the training instances.
For label flipping based corruption, we first randomly select
ϕ = 60% and ϕ = 80% of training labels respectively. In
the selected labels, we require that 2/3 of them are positive
labels and rest of them are negative ones. They are used to
mimic asymmetric label flipping noise, where positive in-
stances are more prone to miss-labeling. We repeat random
sampling of training data and noise injection for 10 times.
The mean and variance of R-squared and AUC scores of the
trained model on the testing instances measure accuracy of
regression and classification.

In addition, as CoMT conducts subset selection over
the training data, we set a fixed threshold th = 1e − 4
empirically over αk of each teacher for all 4 benchmark
databases. Only the training instances with their αki larger
than th are used to aggregate the model parameters follow-
ing Algorithm.1. We thus record the fraction % of the se-
lected instances in the whole training data set in the results.

All the methods are implemented in Python 2.7 with
Numpy and Scipy packages on a 5-core AWS EC2 public
cloud server, with one core per teacher.

Results of the regression set
We consider separately non-iid regression feature corrup-
tion and non-iid regression target corruption in table.2 and
table.3. Co-occurrence of feature and target corruption is left
in our future study. The R-squared score derived by training
with clean training data and trusted instances is shown as
the ground truth. Generally, increasingly stronger noise cor-
ruption over all local machines causes degradation of per-
formances of the baseline methods. The proposed CoMT
method, in contrast, consistently achieves the best and sta-
ble regression accuracy. TI-only and TI-Noise doesn’t help
in learning, as the trusted instances by themselves are not
informative enough to conquer the pervasive noise.

Though DUTI shares the same origin as our method, its
teaching flexibility is limited from two perspectives: i) it
constraints the amount of the injected data crafting aggres-
sively via the sparse regularization over the crafting variable.
Besides, it doesn’t include subset selection as a complemen-
tary teaching operation. ii) Standalone use of DUTI on each



teacher involves no teaching collaboration, which makes it
fail to reach a jointly optimal teaching maneuver. As a re-
sult, even though DUTI performs better than TI+Noise, its
performance is still worse than that of CoMT.

REWLS, GeoMed and RSA make use of robust estima-
tors to handle the training data flaws. They assume the
noise-corrupted model update as outliers in a long-tailed
distribution. Nevertheless, the pervasive noise change dras-
tically the profiles of training data. The long-tailed distri-
bution assumption does not hold in this situation. Conse-
quently, these method doesn’t help to robustify the learn-
ing results. On CPUSMALL and ABALONE, CoMT uses
60% to 70% of the training data instances to calculate the
model parameter. We also measure on average the magni-
tudes of the data crafting efforts injected to the selected cor-
rupted training instances. It is calculated as the averaged ra-
tio 1/K

∑K
k=1(‖βkx‖/‖Xk‖ + ‖βky‖/‖Y k‖). The averaged

ratio is 22% on CPUSMALL and 21% on ABALONE. Note
that our focus is not to recover the underlying ground truth
of training data profiles. We aim at tuning the training data
to achieve better prediction accuracy. Therefore, we allow
relatively larger data crafting in teaching compared to that
reported in DUTI (Zhang, Zhu, and Wright 2018), which
provides more tuning flexibility. However, the magnitude of
the injected data crafting is still a small fraction of that of a
training data instance and controllable by appropriately set-
ting λZ in Eq.3.

Results of the classification set
We separately study systematic corruption over the feature
vectors and class labels, as shown in table.4 and table.5. The
AUC scores derived by training with clean training data and
trusted instances are given in the tables as the ground truth
accuracy. In contrast to the baseline methods, CoMT uses
no more than 70% of the training data to obtain distinc-
tively higher classification accuracy. By comparison, simply
incorporating trusted instances into training (in TI+Noise) or
teaching with limited flexibility (in DUTI) fails to improve
the learning performances.

The results also confirm the necessity of organizing col-
laboration among different teachers, compared to the stand-
alone use of DUTI on each teacher. As discussed over the re-
gression test results, robsut estimator based solutions, such
as RloR, rLR, GeoMed and RSA can not mitigate the per-
vasively occuring systematic noise, e.g. over 60% of train-
ing instances are miss-labeled. As we can find in the tables,
these approaches don’t help to improve accuracy compared
to TI+Noise.

We use 1/K
∑K
k=1 ‖βk‖/‖Zk‖ to evaluate the relative

strength of the manipulation efforts on the classification
margins. The averaged ratio is 22% on IJCNN and 24% on
SUSY, which is similar with those observed in the regres-
sion test. It demonstrates consistent applicability of CoMT
in different learning scenarios.

Run-time cost test
Classic machine teaching methods suffer from the expensive
cost of solving the bi-level teaching objective. To demon-

strate that our work improves the applicability of machine
teaching approaches on large-scale data, we measure the av-
eraged run-time cost of the proposed CoMT method and
DUTI on each data set, which includes the time cost for up-
dating in parallel αk and βk of all teachers and communica-
tion between the teachers and the central learner.

Due to the space limit, we only choose the non-iid feature
corruption scenario. For each data set, we fix η = 0.10%
and choose the most contaminated setting of feature corrup-
tion. CoMT costs 35.00s, 45.51s, 264.32s and 359.75s re-
spectively on ABALONE, CPUSMALL, IJCNN and SUSY.
In contrast, the run-time cost of DUTI increases more dras-
tically, which costs 45.54s and 227.40s on ABALONE and
CPUSMALL, while more than 1000s on IJCNN and SUSY.
DUTI requires to retrain the model after updating the data
crafting variable in each iteration, whereas CoMT avoids
this issue by introducing dual coordinate descent.

Limitations
The proposed CoMT approach inherits the idea of using
trusted instances as seeds in the teaching process, which was
originally proposed in (Zhang, Zhu, and Wright 2018). Like-
wise, it shares the similar theoretical limitations as those
pointed out in (Zhang, Zhu, and Wright 2018). Intuitively,
we ascribe the performance of CoMT to the teaching flex-
ibility. CoMT allows both crafting and training subset se-
lection based teaching. It increases the data manipulation
space and thus offers more flexibility to search for consis-
tent model parameters with the trusted instances. We believe
that it is helpful for recovering the applicable model facing
severe data flaws. Nevertheless, it is still an open issue to un-
veil theoretically how the trusted instances help to improve
generalization capability of the learner. Such analysis is also
helpful for evaluating quality of the trusted instances, in or-
der to provide proper coverage of typical feature profiles.
Besides, we select the trusted instance as i.i.d. samples. In
contrast, trusted instances of typical feature profiles identi-
fied by field experts are usually highly correlated.

Conclusion and Future Work
In this paper, we explore how to produce a robust federated
model training process despite of extremely pervasive sys-
tematic data corruption via collaborative teaching. In our
work, conducting teaching efforts on the buggy training data
and learning with the tuned data are coupled into a joint opti-
mization problem. The learning-performance directed teach-
ing helps recover the underlying true relation between the
features and labels of training instances. Furthermore, the
teaching collaboration is organized as a computationally ef-
ficient and privacy-preserving process. Information sharing
between the collaborative teachers helps seek jointly optimal
teaching efforts. The selected trusted instances should prop-
erly cover the typical feature profiles of domain data to guide
the teaching activity. Our future work will focus on analyz-
ing theoretically the role of trusted instances in improving
the tolerance of the learner against data flaws. Furthermore,
we plan to extend practical use of the proposed method over
more complex learners, such as neural nets.



Table 2: Comparison of R-squared on CPUSMALL (R-squared score with clean training data:0.71)
Non-IID Regression Feature Corruption

η δx
CoMT TI-only TI+Noise DUTI REWLS GeoMed RSA

Avg V ar % Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar

1.0%
0.50 0.69 2.73e-5 0.65 0.62 7.43e-5 0.64 7.51e-5 0.64 4.51e-5 0.65 4.82e-5 0.64 5.75e-5 0.64 1.57e-5
1.50 0.68 2.50e-5 0.60 0.62 7.43e-5 0.49 4.85e-5 0.48 6.70e-5 0.48 4.20e-5 0.49 7.49e-5 0.49 3.10e-5
4.50 0.69 2.34e-5 0.55 0.62 7.43e-5 0.18 3.39e-5 0.29 4.66e-6 0.19 5.40e-6 0.18 3.05e-5 0.18 5.76e-5

5.0%
0.50 0.67 3.55e-5 0.65 0.67 1.47e-5 0.54 4.35e-5 0.55 2.73e-5 0.54 2.77e-5 0.54 4.61e-5 0.54 2.85e-5
1.50 0.71 2.51e-5 0.65 0.67 1.47e-5 0.54 4.77e-5 0.57 3.20e-5 0.53 4.41e-5 0.54 4.59e-5 0.54 4.30e-5
4.50 0.71 1.92e-5 0.65 0.67 1.47e-5 0.53 2.24e-5 0.57 3.68e-5 0.52 3.51e-5 0.52 4.01e-5 0.52 3.68e-5

Non-IID Regression Target Corruption

η δy
CoMT TI-only TI+Noise DUTI REWLS GeoMed RSA

Avg V ar % Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar

1.0%
10.0 0.70 2.86e-5 0.65 0.63 2.87e-5 0.65 2.86e-5 0.66 3.95e-5 0.64 4.26e-4 0.65 3.26e-6 0.65 2.37e-6
20.0 0.70 4.68e-6 0.60 0.63 2.87e-5 0.64 4.10e-5 0.66 3.20e-5 0.64 3.03e-5 0.64 2.93e-5 0.65 4.62e-5
30.0 0.69 1.99e-5 0.65 0.63 2.87e-5 0.64 2.02e-5 0.65 4.36e-6 0.62 3.40e-6 0.62 3.22e-5 0.62 3.76e-5

5.0%
10.0 0.69 2.50e-5 0.70 0.66 2.12e-5 0.64 2.34e-5 0.65 3.08e-5 0.64 2.96e-5 0.64 3.03e-5 0.64 3.70e-5
20.0 0.69 2.39e-5 0.70 0.66 2.12e-5 0.63 2.07e-5 0.66 4.25e-5 0.65 4.77e-4 0.65 3.83e-5 0.65 4.87e-5
30.0 0.69 2.28e-5 0.70 0.66 2.12e-5 0.63 2.46e-5 0.65 3.69e-6 0.63 3.64e-5 0.63 2.57e-4 0.63 3.54e-4

Table 3: Comparison of R-squared scores on ABALONE (R-squared score with clean training data:0.42)
Non-IID Regression Feature Corruption

η δx
CoMT TI-only TI+Noise DUTI REWLS GeoMed RSA

Avg V ar % Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar

1.0%
0.50 0.39 2.05e-5 0.75 0.09 3.34e-5 0.27 4.15e-5 0.29 6.51e-5 0.27 6.03e-5 0.27 5.20e-5 0.27 4.15e-5
1.50 0.39 3.64e-5 0.70 0.09 3.34e-5 0.14 5.73e-5 0.15 5.20e-5 0.13 5.53e-5 0.13 4.48e-5 0.13 4.27e-5
4.50 0.40 3.54e-5 0.70 0.09 3.34e-5 0.11 2.89e-5 0.12 2.53e-5 0.11 3.57e-6 0.12 5.58e-5 0.12 5.51e-5

5.0%
0.50 0.41 2.73e-5 0.70 0.32 3.28e-5 0.34 4.56e-5 0.36 3.23e-5 0.34 2.98e-5 0.34 4.31e-5 0.34 2.86e-5
1.50 0.39 2.27e-5 0.70 0.32 3.28e-5 0.26 4.34e-5 0.29 4.56e-5 0.29 3.54e-4 0.29 2.20e-4 0.29 3.38e-5
4.50 0.36 2.28e-5 0.75 0.32 3.28e-5 0.01 4.29e-5 0.10 3.83e-5 0.08 4.51e-6 0.08 3.11e-5 0.08 3.66e-5

Non-IID Regression Target Corruption

η δy
CoMT TI-only TI+Noise DUTI REWLS GeoMed RSA

Avg V ar % Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar

1.0%
1.50 0.37 1.92e-5 0.75 0.34 3.23e-5 0.31 5.00e-5 0.34 3.75e-5 0.34 4.30e-5 0.34 3.46e-5 0.34 5.46e-5
4.50 0.37 1.18e-5 0.75 0.34 3.23e-5 0.31 1.25e-5 0.34 2.42e-5 0.31 2.94e-5 0.31 2.91e-5 0.31 3.72e-5

13.50 0.37 1.60e-5 0.75 0.34 3.23e-5 0.31 2.90e-5 0.35 2.94e-5 0.31 3.16e-5 0.31 2.16e-5 0.31 2.32e-5

5.0%
1.50 0.40 1.73e-5 0.70 0.35 2.87e-5 0.33 2.42e-5 0.36 2.93e-5 0.33 3.17e-5 0.33 2.85e-5 0.33 2.54e-5
4.50 0.39 2.24e-5 0.70 0.35 2.87e-5 0.33 1.68e-5 0.34 2.20e-5 0.33 3.27e-5 0.33 2.93e-5 0.31 3.07e-5

13.50 0.39 3.68e-5 0.70 0.35 2.87e-5 0.32 2.67e-5 0.36 6.56e-5 0.32 6.24e-5 0.32 5.12e-5 0.32 5.54e-5

Table 4: Comparison of AUC scores on IJCNN (AUC score with clean training data:0.92)
Non-IID Classification Feature Corruption

η δx
CoMT TI-only TI+Noise DUTI RloR GeoMed RSA

Avg V ar % Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar

1.0%
0.50 0.88 2.83e-5 0.65 0.69 4.08e-5 0.71 3.12e-5 0.75 2.92e-5 0.71 4.23e-4 0.72 4.64e-6 0.72 3.94e-6
1.50 0.89 2.19e-5 0.70 0.69 4.08e-5 0.62 3.06e-5 0.65 3.93e-5 0.64 4.51e-5 0.64 3.68e-5 0.64 4.27e-5
4.50 0.89 2.80e-5 0.70 0.69 4.08e-5 0.64 2.71e-5 0.66 4.06e-6 0.63 4.43e-5 0.63 3.75e-5 0.63 3.16e-5

5.0%
0.50 0.92 2.33e-5 0.70 0.87 2.42e-5 0.73 4.91e-5 0.75 3.57e-5 0.72 4.35e-5 0.72 4.22e-5 0.72 4.28e-5
1.50 0.92 9.69e-6 0.70 0.87 2.42e-5 0.58 2.18e-5 0.62 1.67e-5 0.55 1.39e-5 0.59 3.03e-5 0.59 3.46e-5
4.50 0.92 2.06e-5 0.75 0.87 4.59e-5 0.54 3.65e-5 0.59 4.34e-5 0.51 4.60e-5 0.54 4.54e-5 0.54 3.69e-5

Asymmetric Label Flipping Corruption
η ϕ CoMT TI-only TI+Noise DUTI rLR GeoMed RSA

1.0% 0.60 0.89 3.37e-5 0.70 0.65 2.41e-5 0.79 2.25e-5 0.81 9.95e-5 0.73 4.30e-4 0.79 1.55e-6 0.79 1.35e-6
0.80 0.89 8.00e-6 0.70 0.65 2.41e-5 0.12 4.51e-4 0.25 4.20e-5 0.11 3.37e-5 0.12 3.93e-5 0.12 3.78e-5

5.0% 0.60 0.91 2.52e-5 0.70 0.81 2.04e-5 0.85 3.55e-5 0.86 3.09e-5 0.83 2.82e-4 0.85 2.53e-6 0.85 3.06e-6
0.80 0.91 8.99e-6 0.70 0.81 2.04e-5 0.26 3.19e-5 0.33 2.85e-5 0.24 3.69e-5 0.26 2.93e-5 0.26 2.50e-5

Table 5: Comparison of AUC scores on SUSY (AUC score with clean training data:0.79)
Non-IID Classification Feature Corruption

η δx
CoMT TI-only TI+Noise DUTI RloR GeoMed RSA

Avg V ar % Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar Avg V ar

0.1%
1.50 0.74 2.86e-5 0.75 0.50 3.98e-5 0.68 3.21e-5 0.69 3.16e-5 0.66 3.30e-5 0.68 4.72e-5 0.68 4.99e-5
4.50 0.75 3.09e-5 0.70 0.50 3.98e-5 0.56 3.48e-5 0.62 4.40e-5 0.55 3.35e-5 0.56 2.56e-6 0.56 3.35e-5

13.50 0.71 3.12e-5 0.60 0.50 3.98e-5 0.51 5.04e-6 0.55 4.95e-5 0.51 3.26e-5 0.51 2.55e-5 0.51 3.26e-5

0.5%
1.50 0.73 3.53e-5 0.60 0.63 2.49e-5 0.65 3.21e-5 0.67 3.65e-5 0.63 4.84e-4 0.65 3.67e-5 0.65 3.58e-5
5.50 0.74 3.13e-5 0.70 0.63 2.49e-5 0.64 3.60e-5 0.66 4.74e-5 0.63 6.89e-5 0.64 5.93e-5 0.64 5.88e-5

13.50 0.73 3.12e-5 0.70 0.63 2.49e-5 0.50 5.05e-5 0.57 4.36e-5 0.50 4.80e-5 0.50 4.94e-05 0.50 5.26e-5
Asymmetric Label Flipping Corruption

η ϕ CoMT TI-only TI+Noise DUTI rLR GeoMed RSA

0.1% 0.60 0.75 2.08e-5 0.50 0.64 3.88e-5 0.64 4.43e-5 0.66 4.35e-5 0.63 3.43e-5 0.64 4.53e-5 0.64 4.17e-5
0.80 0.75 1.97e-5 0.50 0.64 3.88e-5 0.22 3.20e-5 0.29 2.54e-4 0.22 4.20e-5 0.22 6.10e-5 0.22 4.87e-5

0.5% 0.60 0.75 2.83e-5 0.50 0.63 3.37e-5 0.65 3.48e-5 0.67 5.42e-5 0.62 6.52e-5 0.65 3.65e-5 0.65 3.15e-5
0.80 0.75 3.16e-5 0.50 0.63 3.37e-5 0.20 3.86e-5 0.24 2.49e-5 0.20 3.30e-5 0.20 5.20e-5 0.20 5.56e-5
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