
Cookies from the Past: Timing Server-Side
Request Processing Code for History Sniffing

ISKANDER SANCHEZ-ROLA, University of Deusto and NortonLifeLock Research Group
DAVIDE BALZAROTTI, EURECOM
IGOR SANTOS, University of Deusto and Mondragon University

Cookies were originally introduced as a way to provide state awareness to websites, and are now one of the backbones of the
current web. However, their use is not limited to store the login information or to save the current state of user browsing. In
several cases, third-party cookies are deliberately used for web tracking, user analytics, and for online advertisement, with
the subsequent privacy loss for the end users.

However, cookies are not the only technique capable of retrieving the users’ browsing history. In fact, history sniffing
techniques are capable of tracking the users’ browsing history without relying on any specific code in a third-party website,
but only on code executed within the visited site. Many sniffing techniques have been proposed to date, but they usually have
several limitations and they are not able to differentiate between multiple possible states within the target application.

We propose BakingTimer, a new history sniffing technique based on timing the execution of server-side request processing
code. This method is capable of retrieving partial or complete user browsing history, it does not require any permission, and
it can be performed through both first and third-party scripts. We studied the impact of our timing side-channel attack to
detect prior visits to websites, and discovered that it was capable of detecting the users’ state in more than half of the 10K
websites analyzed, which is the largest test performed to date to test this type of techniques. We additionally performed a
manual analysis to check the capabilities of the attack to differentiate between three states: never accessed, accessed and
logged in. Moreover, we performed a set of stability tests, to verify that our time measurements are robust with respect to
changes both in the network RTT and in the servers workload. This extended version additionally includes a comprehensive
analysis of existing countermeasures, starting from its evolution/adoption, and finishing with a large-scale experiment to
asset the repercussions on the presented technique.

CCS Concepts: • Security and privacy→ Browser security.

Additional Key Words and Phrases: user privacy; browser cookies; history sniffing

ACM Reference Format:
Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos. 2020. Cookies from the Past: Timing Server-Side Request Processing
Code for History Sniffing. 1, 1 (August 2020), 24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The World Wide Web (WWW) is built on top of the HyperText Transfer Protocol (HTTP), a stateless request/re-
sponse protocol in which each request is executed independently from any other received before. However, most
web applications need to keep track of the user’s progress from one page to another. For instance, after a user

Authors’ addresses: Iskander Sanchez-Rola, University of Deusto, NortonLifeLock Research Group; Davide Balzarotti, EURECOM; Igor Santos,
University of Deusto, Mondragon University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2020/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

has successfully logged into a service, she expects the application to remember her authentication and allow her
to perform other actions in the same website accordingly.

In order to solve this problem, in 1994 Netscape Mosaic introduced the use of Cookies [61]. HTTP cookies are
small fragments of data that servers can send to the users inside their responses (by using the Set-Cookie header
field) or by the use of JavaScript code executed in a webpage in order to create a cookie on the client-side (by
invoking the document.cookie function). Either way, the browser stores the value of each cookie and includes
them in every future request made to the same server. Today, cookies are used for a variety of different purposes,
including to maintain the users’ login status, to store different options that a user makes while browsing a website
(such as the language preference or the acceptance/rejection of a specific consent), or to simply keep track of
previous visits from the same user.
The cookies we described so far are called first-party cookies, as they are created by the website the user is

visiting. However, these are not the only cookies that may be created in the browser. Websites load different
types of resources to offer their services and the requests made to retrieve these resources may also trigger the
creation of cookies. In many cases, these third-party cookies are used to track users among the different websites
they visit. For instance, several studies have measured that a large percentage of websites on the Internet perform
some form of user tracking [1, 17, 47, 53].
While tracking based on third-party cookies is one of the main techniques different companies use to offer

personalized advertisements, other alternatives exist — for instance based on fingerprinting the browser or
the user’s machine by collecting either hardware or software information [8, 33, 38, 54]. These approaches can
completely bypass all the browser protections regarding basic tracking, but their fingerprinting code needs to be
executed in all the websites the user visits. Therefore, for websites that are not part of the main tracking networks,
there is another option based on so-called history sniffing. History sniffing attacks can track the user without
relying on any code executed in other third-party websites, just the one executed in the website accessed by the
user. While many methods have been proposed in this line of research [7, 20, 32, 36, 69], most of them suffer
from several severe restrictions. For instance, previous approaches only provide a coarse-grained classification
(e.g., logged-in vs not logged-in), can be easily defeated by users without serious side-effects (e.g., by deleting the
browser cache), and were all tested only in a handful of anecdotal cases. As an example, the two most recent
works in this area, published in 2015 at the ACM CCS [69] and NDSS [36] conferences, were only evaluated on,
respectively, five and eight target websites.

We present a new timing side-channel attack [51], called BakingTimer, that only relies on the presence of first
party cookies set by the target websites (which are therefore considered third-party in the context of the attacker
page). Our system is based on the analysis of the time spent by the server to process an HTTP request, and by
using this information is able to detect both if the user previously visited the website and whether she is currently
logged in into it. We then performed a set of experiments to measure how many websites are vulnerable to this
attack. First, we checked if our method could detect website accesses, and found that our prototype was able to
detect the access in more than half of the websites we analyzed. We tested our solution on over 10K websites
belonging to different categories, resulting in the largest evaluation of a history sniffing technique performed to
date. Second, we follow a similar approach as previous work, and manually tested the login detection capabilities
in a small set.
This extended version also includes a comprehensive analysis of existing countermeasures. We started by

analyzing the different possible countermeasures, both at the server- and client-side. After explaining why
server-side solutions are not feasible on real-world deployments, we focused our analysis around an existing
client-side solution, the SameSite cookie attribute. We first present the draft evolution, and explain the details
of the different versions of the document. We then discuss the SameSite adoption on the three main browser
families (i.e., Chrome, Safari, and Firefox), from the beginning of the draft in 2016, until the current year.

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 3

We also performed a new set of large-scale experiments to understand how cookies are created, and to which
extendt the SameSite countermeasure is adopted in the real world. In particular, we visited multiple pages from
each of the Top 1M most accessed websites, collecting and analyzing around 138M cookies. We discuss the
different fields related to our attack (e.g., if first-party cookies are dynamically or statically created) and, finally,
we studied which are the consequences for our history sniffing attack. This allowed us to differentiate the sites
that are safe against our technique, from those that are more susceptible to be vulnerable to our timing attack.

2 BACKGROUND

To ease the comprehension of our contribution, in this section we review several aspects regarding current cookie
management, as well as different attacks presented in the literature. We then discuss the threat model we consider
for our history sniffing attacks.

2.1 Browser Cookies

Cookies were introduced by Lou Montulli [57] while working in Netscape, and are considered the first method
to track users on the Web. Cookies allow services to remember a particular user by storing snippets of data
on the users’ computers, maintaining a concrete browsing state for a returning visitor. After cookies were first
presented, they were rapidly embraced by the web community because of their flexibility and the increased
usability they enabled in a broad range of websites. As a result, they are now playing a core role as part of the
Internet technology [47].

While cookies were not specifically designed to track users across websites, the abuse of their stateful nature
started shortly after their first appearance. Since websites are composed of different resources that may be stored
in the same domain hosting the page as well as in other third-party servers, these external resource providers
have the capability of including cookies along with their provided resource. Therefore, if a third-party server
provides resources to a large number of websites, it can certainly gather an accurate picture of a user’s browsing
history and profile her habits. For example, a website site.com includes an image from a third-party domain
called advertisement.com. The server advertisement.com sends the image along with a HTTP Set-Cookie
header, that will be stored on her machine. When the same user visits another website site-two.com that also
utilizes images from advertisement.com, her browser will send the previously set cookie to advertisement.com
alongside the request for the image. This allows the advertisement server to recognize the user and collect a list
of the websites she regularly visits. This behavior, called third-party cookies, is arguably the most widespread
technique for web tracking.

However, even the most privacy-invasive third-party cookies are an important part of the web. In fact, the most
common usage of this specific type of cookies is web advertisement or analytics. Their web tracking capability is
used to track users’ browsing history and use this information to build a user profile for custom advertisements.
In fact, advertising companies have already stated that web tracking is required for the web economy [58].
However, other techniques exist that can be used for analytics and targeting while preserving users’ privacy (e.g.,
[2, 4, 5, 22, 24, 68]).

However, both third-party and first-party cookies are widely used and browsers even encourage their usage in
order to ease usability. For example, when a user of the well-known Chrome browser decides to erase all the
stored cookies, the browser warns the user that “This will sign out of most websites”. Even more important are the
settings regarding cookies. Chrome recommends to enable the permission for websites to read and write cookie
data, and permits to block third-party cookies. Therefore, the importance of cookies is not only acknowledged by
websites, but also by the browsers themselves albeit the privacy issues that may arise.

, Vol. 1, No. 1, Article . Publication date: August 2020.

4 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

Even though it is not a common action among the average web users, third-party cookies can be blocked (as
detailed in Section 2.1). However, browsers do not allow users to remove just these cookies, leaving as only option
to manually remove them one by one.

2.2 History Sniffing

A large variety of history sniffing methods exists. We can group these techniques in two categories:

CSS-based attacks. A common trick a page can use to detect if a user has visited other websites (out of a
predefined list of targets) is to check the CSS style used to render links. For instance, by checking the CSS:visited
style of a particular link [15] it is possible to tell if that link had been visited before (typically as it is displayed in
a different color). Similarly, it is possible to craft other CSS-based techniques [25, 30, 59, 72] even using filters to
exploit the differences of the DOM trees [71] by using a timing side-channel attack.

Timing-based attacks. There is a broad range of history-stealing techniques based on timing information.
These approaches were first introduced for this purpose in order to compromise users’ private data by measuring
the time differences in accessing different third-party content [20], by discovering if it had been cached by the
browser. Extracting users’ true geolocalization for the same purpose is also possible through web timing, due to
the high customization present in current websites. It is also possible to detect if the user is currently logged in
into certain websites by timing of specific requests [7], exploiting the AppCache [36], or by estimating the size of
certain resources [69]. As explained in Section 3, our own attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks discussed above are already mitigated by browser
vendors. For instance, for the CSS:visited style check, all the corresponding browser functions (e.g., getCompu-
tedStyle and querySelector) have been modified to always return that the user has never visited the link [40].
Despite these mitigations, recent work has shown that the attack is still possible using new features available in
modern browsers. However, several possible defenses exist to avoid the problem, such as the ones proposed by
Smith et al. [59]. In fact, one of these new techniques has already been blocked in Google Chrome [23].
In fact, all existing techniques fall in the classic “arms race” category, in which attacker and researchers

constantly discover new tricks that are in turn mitigated by browser vendors, website developers, or even simply
careful user settings. Therefore, we decided to investigate if it was possible to devise a new technique that
would 1) rely only on server-side information, and 2) that could not be easily prevented without degrading the
performance or functionalities of a web application.

2.3 Threat Model

In the timing attack presented in this paper, we adopt the same threat model used by previous work in the
area [7, 69]. In particular, we assume an attacker can run JavaScript code on the client browser to perform
cross-origin requests. This code can be either loaded directly by the first-party website, or by a third-party service
(e.g., by an advertisement or analytics company).

The information collected by our technique allows an attacker to determine which websites were previously
visited by the user and on which website the user is currently logged in. There are multiple usages for this data
that can result in serious security and privacy implications. The most obvious is related to advertisement, as the
usage of the browsing history allows an advertiser to display targeted advertisements. Moreover, an interested
tracker could create a predefined list of websites and generate a temporal fingerprint of various users, indicating
the user’s state in each of them. Even if the fingerprint could not be used as an standalone fingerprinting solution,
it will definitely improve the fingerprinting capabilities of other web tracking techniques. Finally, from a security
point of view, this information can be used to perform targeted attacks against particular victims.

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 5

1 <?php

2 $userID = "0bc63ecec05112d03544fde0b5a18c70";

3
4 if (isset($_COOKIE [["consent"]) {

5
6 if (isset($_COOKIE [["userID"]) {

7
8 if ($_POST["userID"] == $userID) {

9 getUserData (); // Case C

10 }

11
12 } else {

13 saveNavigation (); // Case B

14 }

15
16 } else {

17 askConsent (); // Case A

18 }

19 ?>

Fig. 1. Example code of a PHP server presenting the three different possible cases

of a cookie process schema.

3 BAKINGTIMER

Out of all the requests a web server receives, some contains cookies and some do not. The main observation
behind our approach is that, when the browser sends a cookie along with an HTTP request, it is reasonable to
assume that the server-side application will check its value, maybe use it to retrieve the associated user session
and load additional data from the database, or that it will simply execute a different execution path with respect to
a request that does not contain any cookie (in which case, for example, the application may execute the routines
necessary to create new cookies).
For instance, Figure 1 shows a simple PHP skeleton that empathizes three different possible cases. First, the

program checks if the user already accessed the website before, by testing for the presence of the consent cookie
using the isset function. If the cookie is not found (either because it is the first time the user access the website
or because it has been deleted), the program takes the path we named Case A that calls the askConsent function.
Otherwise, the program performs additional checks by looking for some login information stored in the cookies.
If userID is not indicated, Case B is followed, that calls function saveNavigation, else, the userID information is
first validated, and then the application follows Case C by calling the getUserData function.

Figure 2 shows a simplified representation of the control-flow of our toy application, emphasizing the different
paths. Our hypothesis is that the time difference among the three cases is sufficient, even across a network
connection, to tell the three behaviors apart and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two main tests that make detecting a timing
difference possible: the first to verify if there are cookies at all and the second to analyze them and load session
data. While the comparison themselves are too fast to be identified, the different functions invoked in the three
cases may not be. In our toy scenario, these results in the request take x seconds to be processed if no cookies
are found, y seconds if they exist but there is not a current active session, and z seconds if the user is currently
logged in.

, Vol. 1, No. 1, Article . Publication date: August 2020.

6 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

Fig. 2. Server cookie procress schema.

Our prototype tool, called BakingTimer, performs cross-origin requests towards a number of target websites.
Each request is performed multiple times, with and without cookies. In fact, while JavaScript code cannot directly
test for the existence of cookies belonging to other domains, it can issue HTTP requests in two different ways: (i)
by letting the browser send cookies (if any exist for the target domain) or (ii) by forcing the browser to make a
request without cookies. So, in one case the code knows that no cookie was present in the request, while in the
other cookies may or may not be present depending whether they previously existing in the user browser. The
time difference between the two requests, issued multiple times to account for small noise effects, is then used
by our tool to detect if the browser already had cookies for that particular target. Even if some cookies can be
created when performing these requests, our experiments show that in most cases either the number or type
of these cookies differ from what it is set when the user visits the website. We will discuss this aspect in more
details in Section 4 and Section 7.

3.1 Retrieval Phase

The first phase of our approach is the retrieval phase, in which the algorithm computes the time required by a
server to execute different paths, according to hypothetical cookies sent by the browser. A simplified pseudo-code
of the algorithm is presented in Figure 3. Note that the full implementation of the attacks is executed performing
different asynchronous/non-blocking requests and using onreadystatechange event handlers. Moreover, even if
security policies like Same-Origin Policy (SOP) or Cross-Origin Resource Sharing (CORS) may limit the capabilities
of interacting with the response of cross-origin requests, the event handler would still be able to correctly catch
when the response arrives to the browser – making our attack possible in these cases.

To measure the round-trip times (RTTs), we use the User Timing API [73] implemented in every major browser.
The best solution to get a measure of time independent of the current CPU load of the server or the current speed
and congestion of the network is to perform a comparison with two different requests sent at the same time. Both
time information are obtained side to side, so the workload of the network will likely be roughly the same in the
two cases (especially when the experiment is repeated multiple times). To make it more clear, let us consider
a simple example. Imagine we are timing the execution of certain function of the server that directly depends
on the existence of a specific cookie. Our system would execute a measurement by executing in parallel two
requests, with and without the cookies. In a first measurement, when the network workload is low, the system
can obtain a value of 30.5ms when cookies are sent and a value of 20.3ms without cookies — thus estimating
the execution time of the function in 10.2ms. In a second repetition of the test, when maybe the network load is
higher than before, the same experiment can return two different values, such as 45.1ms with cookies and 34.7ms

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 7

Input: n the number of comparisons to perform.
Output: cs an array of arrays of numbers representing the server

request processing schema: each position are the result of
timings with and without cookies.

1 Function bakingTimer (n)
2 i ←1;
3 cs ← f loat[][] of size n×2;
4 while i ≤ n do
5 j ← 1;
6 while j ≤ 2 do
7 startTime ← GetCurrentTime() ;
8 if j % 2 = 0 then
9 Request(cookies);

10 else
11 Request();
12 end
13 endTime ← GetCurrentTime();
14 loдTime ← endTime − startTime;
15 cs[j][i] ← loдTime;
16 j ← j + 1;
17 end
18 i ← i + 1;
19 end
20 return cs;

Fig. 3. BakingTimer simplified retrieval pseudo-code (implemented using

asynchronous/non-blocking requests and onreadystatechange handlers).

without — leading to a similar (even if not exactly the same) time estimation. In Section 5 we present a number
of stability tests, designed to verify to which extent our technique is robust against external factors that could
tamper the results.

Following the schema presented in Figure 2, if a request requires x seconds to be processed (as opposed to y or
z seconds), a simple comparison can be used to calculate the actual state of the user in relation with the website.
The first request, the one we named as Case A, is issued without cookies by using:

xmlHttpRequest.withCredentials = false;

This guarantees that the server would not receive cookies, even if the browser would have normally sent some
for that particular website. Then, our code repeat the request, this time by setting

xmlHttpRequest.withCredentials = true;.

It is important to remark that the cookies sent in this second request (if any) are completely invisible for
our Javascript code. However, the code can still measure the time required to receive an answer, and use this

, Vol. 1, No. 1, Article . Publication date: August 2020.

8 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

information to infer the previous relation between the user and the target website: if the cookies were created in
a simple access, the server response time will fall in Case B, but if some login cookies are stored in the browser
the time would be more consistent with Case C.

To summarize:

• Not Accessed: If the user never accessed the website, and we perform the timings described above, we
will obtain a result close to zero. In fact, the first request will take x seconds, because we made the request
without cookies. However, also the second request with cookies will take roughly the same amount of time,
as no cookie were available in the browser for the target. In this situation we can infer than both calls were
the same, indicating no previous access to the website under inspection.
• Accessed/Logged: If the user accessed the website in the past or if it is currently logged in into it, the result
of the comparison of the time taken by the two request will be different from zero. As we are not using
absolute values, but only time differences between consecutive requests, our technique can compensate for
differences due to different network delays or workloads.
A more fine-grained classification to distinguish between previous access and current login is also possible
if the attacker has information about the different time required for specific actions. We will investigate
this option and provide more details in the comparison phase section.

The algorithm (see Figure 3) takes one parameter n that indicates the number of comparisons to perform.
As servers can have specific changes in their workload for many different reasons independent of our tests,
we decided to obtain more than one simple comparison. Clearly, the more comparisons the attacker is able (or
willing) to perform, the more precise is the model of the server-side computation she can obtain. Nevertheless,
there is an obvious trade-off between the time spent in fingerprinting a singe website and the number of websites
the attacker wants to test. We will investigate different options and the impact of the number of comparisons on
the accuracy of the classification in Section 4.

3.2 Comparison Phase

As explained in the previous section, our code performs a number of measurements by timings different HTTP
requests for a target website. By subtracting each pair of requests, with and without cookie, we obtain an array
of n time deltas.
In order to classify this data, we need to obtain a ground truth dataset for the selected websites. To this end,

we need to retrieve the computing time information for each of the cases we are interested to detect. By using
this information, we can then statistically test whether a set of measurements belong to one group or another,
simply by computing a T-test over the two data samples. A T-test is a two-sided test for the null hypothesis that
two samples have identical average values. The result tells us which of the three presented cases does a certain
experiment belongs to.

3.3 BakingTimer’s Resolution

Before we started our large scale experiments, we wanted to experimentally verify that our hypothesis is correct
and that the time difference among different server functionalities can be successfully distinguished over a
long-distance network connection. For this reason we implemented a toy service based on web.py [62], a simple
but powerful Python framework that has been used by famous websites such as Reddit and Yandex. In our
example, we controlled the time spent in each path. All HTTP requests sent to the service were issued from a
browser located in a different country of where the server was located (Spain and France respectively), to avoid
any possible bias introduced by short-distance connections. The average ping time among the two machines was
13.6 milliseconds.

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 9

(a) Time deltas at different delays introduced in the server.

Sheet1

Page 1

0 1 2 3 4 5 6
1 0.87 0.55 0.33 0.2 0.042 0.015

0 1 2 3 4 5 6
0.01

0.1

1

Delay (ms)

P
-v

al
ue

(b) P-value (T-test) at different delays in the server.

Fig. 4. BakingTimer resolution test.

The server-side application consist in less than 10 lines of code with just a single Python function. In this
function, we receive the GET requests, and using the web.cookies method, we are able to check if the request
includes any cookie, and its value. The service was designed to introduce no delay for requests without cookies,
and a configurable delay (ranging from 1 to 6 milliseconds in our tests) to the processing of any request containing
cookies. The specific delay was indicated using that same cookie, which was created with JavaScript thought
document.cookie. We were able to control the introduced delay invoking the function sleep from the Python
time library.
The results of our experiments are summarized in Figure 4. The graphs show that it is possible to detect the

time the server spent processing each request quite precisely (see Figure 4a), despite the network load. However,
with delays below four or five milliseconds, the difference among the two sets of requests measured by the
browser is not statistically significant and therefore an attacker could not conclude whether or not cookies
were present in the browser for the target website (see Figure 4b). Instead, if the difference between two paths
was equal or above five milliseconds, then even over a long distance connection, it was possible to reliably tell
the difference between the two cases. This indicates that it is not necessary for a website to perform complex
computations to be vulnerable to our technique and even looking up some data from a database may be sufficient
to make it vulnerable to our attack. Obviously, less optimized servers are more prone to incur into larger delays
that are easier to observe remotely, while high-end servers may make the path detection more difficult and error
prone. We will analyze all these situations in the following section.

4 EXPERIMENTS

In most of the previous studies on history sniffing, the authors limited their experiments to just few selected
websites. This poor coverage is mainly due to the fact that existing solutions could generally only distinguish
between two states: currently logged in or not logged in. As a result, experiments required the authors to manually
create accounts for different services, thus reducing the number of websites that could be tested.

Our technique allows instead to distinguish among multiple states, and in particular to differentiate between
websites that have been previously visited by the victim from those that have not. Therefore, on top of performing
a login detection case study (detailed in Section 6), we also conducted a large scale experiment to measure the
percentage of different websites that are vulnerable to our attack.
The dataset used in our tests consists of two different groups: (i) highly accessed websites and (ii) websites

related to sensitive information that users may want to keep private. For the first group we selected websites

, Vol. 1, No. 1, Article . Publication date: August 2020.

10 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

from the Alexa [3] Top5K list, to verify whether extremely popular services are also vulnerable to our timing
side-channel attack. The second group is composed instead by websites that can be used to detect private personal
information of the user, such as medical or religious websites. We used categories defined as sensitive in various
data protection laws [18, 19, 34]. Since many of the entries in this group are not included in the Alexa Top1M, we
could also check if not highly accessed websites are more or less vulnerable than highly accessed ones.

4.1 Domain Selection

We first populated our list of personal information websites by performing various queries obtained through
the auto-complete option offered by different search engines (e.g., “cancer treatment side effects”). We made five
different queries for the following six categories: medical, legal, financial, sexual identity, political, and religion.
Our tool issues each query on four search engines (Google, Bing, Yandex, and DuckDuckGO) and retrieved the
top 100 results from each of them.

To avoid an overlapping between the two lists, we removed from this group domains that also belonged to the
Alexa Top10K list. We also removed any website that appeared in multiple categories, as we wanted to focus only
on specific areas in isolation. Finally, we obtained a set of 5,243 unique personal information websites. In order to
balance the two groups in the dataset, we selected the same number of websites from the Alexa top list. The
combination of the two groups resulted in a final dataset of 10,486 websites.

4.2 Methodology

We implemented our BakingTimer proof-of-concept by using a custom crawler based on the well-known web
browser Chrome, without using any flag that may influence the network connectivity in any way. We can perform
multiple actions using the Chrome debugging protocol (with the remote-debugging-port parameter), which
allows developers to control the browser [9]. For instance, we can access different websites using the navigate
command, or run JavaScript code on the current website once loaded with the loadEventFired event and the
evaluate command. The executed code uses xmlHttpRequest to perform the corresponding requests of the
presented technique. Even if it would have been possible to implement the experiments by using a simple Python
script, we decided to rely on a real-world browser to obtain the most realistic results possible. Our crawler follows
two different phases in order to obtain the data that we will later used to check if a target server is actually
vulnerable to the attack.
• Never Visited: First, the tool cleans every previous access information stored in the browser. Then, it
starts making the different requests described in Section 3 (i.e., both with and without cookies, which in
this case are none) from a third-party website (blank tab). This data will be later used as a baseline for
requests performed when no previous access was done.
• Previously Visited In this case, the browser first accesses the website under inspection. No cleaning
process is performed, so all cookies automatically created by the website are saved in the browser and sent
to the server in the following requests. After that, it goes to a third-party website (blank tab) and starts
making the different requests described in Section 3 to that same website under inspection.

Once all the data was retrieved, we performed the statistical tests described in Section 3 in order to identify
whether the time information in the two groups of requests are statistically different or not. We also repeated the
experiment with different number of requests in order to check their influence on the final result. To be practical,
we tested with a minimum of 10 and a maximum of 50 comparisons (therefore ranging from 20 to 100 HTTP
request per target website). The higher the number the more stable is the measurement, but so is the amount of
time required to run the test. Therefore, the choice boils down to a trade-off between precision and scalability.
We believe that if the attacker is only interested in a handful of websites, then it would be possible to perform
even more than 50 comparisons.

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 11

Fig. 5. Percentage of vulnerable websites depending in the number of comparisons performed.

It is also important to note that since we need to repeat the requests multiple times, it is possible that the first
request “pollutes” the browser by setting cookies that are later sent in the following tests. In other words, if i) the
target website sets cookies on cross-origin requests, and ii) those cookies are the same (in number and nature) of
those set when the website is loaded in the browser, then our timing attack would not work.

However, this does not seem to be very common, as more than half of the 10,486 websites we tested are vulner-
able to our technique. The actual percentage varies between 40%, when the minimum number of comparisons
is performed, and 53.34% if our attack performs 50 comparisons. Figure 5 shows the success rate at different
numbers of comparison for the two groups separately.

4.3 Highly Popular Websites

This group includes 5,243 websites from the Alexa top websites list. As websites in these categories are visited
by a large number of users, most of their servers and the code they run are likely more optimized, thus making
more difficult to measure the timing side channel. This is confirmed by the fact that our attack worked on 35.61%
of the websites in this category. This result is still quite severe, as it means than a webpage could still reliably
identify if its users had previously visited more than one third of the most popular pages on the Internet.

In order to get a deeper analysis of the obtained results, we clustered the websites in different categories and
we computed the percentage of each of them that were vulnerable to our attacks. To determine the category,
we used three services: Cloudacl [14], Blocksi [6], and Fortiguard [21]. Their category names are similar, and,
after a normalization process, we settled for 78 different category names. Table 1 shows that the top 6 categories
vulnerable to the attacks include around 40% of the websites, with a peak of 43.75% in the case of sport-related
websites in the Alexa top list.

4.4 Privacy-Sensitive Websites

This group includes 5,243 websites from six different categories related to private personal information — i.e.,
medical, legal, financial, sexual identity, political, and religion. The results from these websites allows us to
understand two different aspects. First, we can verify the amount of websites directly related to sensitive
information that are vulnerable to our attack. Second, it gives us an opportunity to test less popular websites (as

, Vol. 1, No. 1, Article . Publication date: August 2020.

12 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

Table 1. Websites vulnerable to our attack (top six private-sensitive on the top and top six highly popular on the bottom).

Category % Vulnerable

Medical 72.63
Religion 71.66
Financial 71.63
Political 70.73
Sexual Identity 70.38
Legal 69.39

Sports 43.75
Search/Portal 42.25
Government 40.63
Travel 40.40
Gaming 39.39
Adult/Pornography 39.06

85% of the vulnerable sites in this category are ranked below the Alexa Top500K) to observe whether smaller
server infrastructures can result in a higher accuracy of our technique.
The results of our experiments show that a stunning 71.07% of all the analyzed websites in this group are

vulnerable to the BakingTimer attack. If we break down the result by category, we see that all have similar
percentages and there is no clear difference between them (see Table 1). This result is much higher than the one
obtained in the top Alexa group, but the difference is not due to the number of cookies. In fact, we compared the
mean and standard deviation of the number of cookies in privacy-sensitive websites and highly popular websites.
Unsurprisingly, the results show that highly accessed websites have a higher mean number of cookies (9.03±7.87)
compared to the number of cookies in private personal information websites (5.83±5.49). This means that the
main reason behind the difference is not linked to the number of cookies, but more likely to the slower servers or
the less optimized code responsible to process the incoming requests.

5 STABILITY TEST

Our attack relies on a time-based side channel used to distinguish among different execution paths on the
server-side application code. The fact that BakingTimer does not look at absolute times but at the difference
between two consecutive requests minimizes the effects of network delays on our computation. However, even if
the time difference between the two request is minimal, it is possible that small non-deterministic variations
such as the jitter, bandwidth, or network congestion and routing can introduce a certain level of noise in the
measurement. To account for these small fluctuations, BakingTimer needs to repeat each test multiple times.
As shown in Section 4, ten comparisons are sufficient to detect nearly 40% of all the analyzed websites, which
increases to over 50% if we perform 50 comparisons.

In order to obtain a clear view of the specific effect the network or the server load can have in our measurements,
we decided to perform a dedicated stability test. For this experiment we randomly picked 25 website detected as
not vulnerable and 25 websites detected as vulnerable to our attack. Following the same approach presented in
the general experiment, we now repeated our test every hour for a period of 24h for each website. Moreover, to
be more realistic, we computed the ground truth on one day, and performed the attacks on the following day.
This resulted in a total of 48 checks per websites, and 2,400 tests globally.

From the group of the 25 websites not vulnerable to our attack, all our tests returned the same result (which
confirmed the absence of the side channel). This results proves the stability of the presented method from a

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 13

Fig. 6. Mean RTT of one website never visited before, during a full day (with data every hour).

network perspective. More concretely, regarding fluctuations, Figure 6 shows, for one of the websites analyzed,
the different mean RTTs we registered each hour. Even if there were considerable fluctuations on the network
speed during the day, we were still able to perform the correct classification.
From the group of the 25 vulnerable websites, we were able to correctly identify when each website was

previously visited – in all our tests. Instead, in the case in which we did not previously visited the websites, there
was one case in which (at 9 and 10 pm), we incorrectly identified a single website as visited. Nevertheless, in
total from the 2,400 checks performed in this experiment, we only incurred in two false positives and no false
negatives, indicating the high reliability of the presented history sniffing technique.

6 LOGIN DETECTION

In this section we look at performing a more fine-grained classification of the user history, not just by telling if a
victim has visited a target website in the past, but also to distinguish a simple visit from owning an account or
being currently logged in into the service.
Since this analysis requires a considerable manual effort to set up the accounts and operate the websites, we

will limit our study to few examples taken from the two groups in our dataset. This approach is similar to the
one regularly adopted by other related work on history stealing techniques [36, 69]. It is important to remark
that we did no test websites that required a registration fee or that had a complex registration procedures (e.g.,
requiring a phone number verification or a bank account).

This cases, a third-party website can check if the user ever accessed any of the websites under attack, and can
even check if the user is logged in. This type of information could be extremely useful for a malicious attacker.
For instance, it could be used to perform targeted phishing attacks against users, to steal the login credentials
of those affected websites. Moreover, it will also be beneficial for other types of attacks like Cross-Site Request
Forgery (CSRF), in which the attacker could use the state of the user in a website vulnerable to this type of attacks
to perform privileged actions on the users accounts, such as password changes or information retrieval [12, 48].
Actually, the attacker does not need to control the third-party website, just have his code executed on them, for
example via an advertisement (as explained in Section 2).

, Vol. 1, No. 1, Article . Publication date: August 2020.

14 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

6.1 Highly Accessed Websites

From this category we selected two popular websites, related to gaming and clothing, that were detected to be
vulnerable to our BakingTimer attack (Section 4), and that have been the target of different phishing attacks —
in one case for the huge number of users and in the other case for the high economic value of their customers.
More concretely, World of Warcraft (WoW) and Gucci.
In both cases, after the user logs in, a number of cookies are created in the user’s browser to store this new

status (e.g., wow-session and gucci-cart respectively). The presence of these cookies make the server take a
different execution path, resulting in a different computation time. We followed the same analysis principles
as the ones used when we analyzed the websites in Section 4, and detected both websites fall in our simplified
three-paths model presented in Figure 2. The results show than each of the different states (e.g., not accessed,
accessed, and logged in), does not match any of the other two states when performing the statistical test of the
comparison phase (see Section 3).

6.2 Private Personal Information Websites

Detecting if a user has previously visited a website linked to specific information such as religion or sexual
identity can leak some private information to third-parties the user may not even be aware of. However, if the
third party could actually detect that the user is currently logged in into one of those websites, the link between
the user and the website becomes much stronger.
From this category we picked a religious website (Dynamic Catholic) and a sexual related chat/forum

(LGBTchat.net). Again, the presence of login cookies (i.e., xf_user and frontend_cid) made the two applications
take different execution paths, whose computation time was sufficiently different to be reliably fingerprinted by
our solution.

6.3 Persistent Login Information

In all previous cases, when the user logs out from the website, the different cookies related to the login status are
deleted by the server. In this situation, a third-party website would still be able to detect that the user has visited
the website in the past, but it would not be able to distinguish if she had an account and she ever logged into the
service.

While this may seem obvious, there are also websites for which it is not true. In fact, some sites do not properly
(or at least not completely) delete all cookies they created in relation to the login process. This could be either
because the cookie deleting process was not performed correctly, or because the website developers explicitly
decided to maintain part of the login information stored in the cookies even when the user is not logged in.
However, the presence of these cookies can be sufficient to trigger a different code execution in the application
that can be detected by our technique. This allows third-party to be able to differentiate users that just accessed
the websites from those who own an account, even if they are not logged in at the time the test is performed.

For instance both Microsoft/MSN and Openload fall into this category because of the presence of, respectively,
a MUID cookie and a cookie with a MD5 hash as name. In both cases, when the user logs out of the service, some
cookies are deleted but some other are maintained in the browser. In this two specific cases, we first classified
the websites following the same three-state schema as in previous cases. Then, we logged out of the service and
checked if this state would be classified as logged or accessed. Our results show that in both cases, the comparison
phases classified this state as logged. This indicates that even if the user logged out, if the websites does not
correctly delete all related cookies, it would be possible to detect a previous logged state.

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 15

Table 2. A comparison of current state-of-the-art timing methods for history sniffing.

Approach Type Login Difficult Previous Websites
Status Clean Access Analyzed

Timing Attacks on Web Privacy [20] Web & DNS Caching ✗ ✗ ✓ <10
Exposing private information... [7] Server Boolean Values ✓ ✓ ✗ <10
Cross-origin Pixel Stealing [32] Cross-origin DOM Structure ✓ ✓ ✗ <10
Identifying Cross-origin... [36] HTML5 Application Cache ✓ ✗ ✗ <10
The Clock is Still Ticking [69] Cross-origin Resource Size ✓ ✓ ✗ <10
Our Approach (BakingTimer) Cookie-based Request Timing ✓ ✓ ✓ 10,486

7 DISCUSSION

Even if a user trusts all the websites she visits, many websites include a large number of third-party services and
resources to improve their usage or to monetize their traffic. All these scripts loaded on the website, including
simple advertisement banners, can track users and performmany different attacks, including the one we presented
in this paper.

7.1 Result Interpretation

In order to obtain the most reliable results, it is important to perform the experiments against multiple real-world
websites. In fact, synthetic websites or small sample sets may not correctly capture all the implementation
patterns encountered in the wild. Our tests show that more than half of the websites we analyzed are vulnerable
to our attack. This means two important things. First, that there is a measurable, statistically significant difference
between the time the server spend processing the two classes of requests (with, and without the access cookies).
Second, that either the website does not set cookies on cross-origin requests, or that those cookies are different
from the one created on a regular access.

7.2 Comparison with Similar Techniques

Table 2 shows the different state-of-the-art timing methods and their different characteristics, both in terms of
adopted technique and on the type and size of the experiments performed to validate.
The majority of previous works allowed an attacker to detect the login status of a victim in other websites.

Only one [20], apart form ours, allows also to detect the access state (but this same technique is unable to detect
the login status). The only technique able to detect both access and login state is the one presented in this paper.

Most of existing attacks, including our own, do not rely on any other browser resource than the cookies. This
makes the technique resilient to generic browsing history cleaning processes, as browsers explicitly discourages
user to delete cookies in their settings (see Section 2). Two techniques are instead based on different types of
browser caching that, on the contrary of cookies, are even deleted by default, and therefore users can easily and
without any major consequence delete them when needed.

Regarding the number of websites analyzed, as nearly all the techniques are only able to detect the login
status, the manual effort needed to perform a big scale analysis made large scale experiments unfeasible. We also
presented a similar set of experiments in Section 6, but we also performed an automatic analysis of over 10k
websites divided in different categories to provide a general overview of how effective this attack can be.

8 COUNTERMEASURES ANALYSIS

As the problem happens in the servers’ request processing logic, the most reasonable solutions may seem those
that involve modifications on how the servers respond to requests. For example, including a random delay in the

, Vol. 1, No. 1, Article . Publication date: August 2020.

16 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

response time. However, this would just increase the noise and a larger number of comparisons may compensate
for small random changes in the processing time. Another possibility could be changing the web application to
have fixed response times for sensitive requests. On top of being very difficult to be properly implemented, this
solution would also have a large performance impact — considerably reducing the number of requests per second
a web site can sustain. Moreover, as the fixed time would need to be exactly the same for all the sensitive request,
they should be as slow as the slowest response the server can make. For all these reasons, we believe none of
these server-side mitigations are practical and feasible to implement in a real-world deployment.

Nevertheless, there is another possible approach to counteract our attack through a client-side solution. RFC6265
is an Internet Engineering Task Force (IETF) document [29] that defines the corresponding HTTP Cookie and
Set-Cookie header fields (e.g., HttpOnly and Secure). In January 2016, an Internet-Draft was published to update
it, with the definition of an opt-in feature indicated though the new attribute called SameSite. The main reason
behind this addition, is to allow to control when the created cookie should be sent in cross-site requests. This
solution could allow to mitigate cross-origin information leakages (as the one presented in this paper) and provide
some protection against cross-site request forgery (CSRF) attacks.

8.1 Draft Evolution

The first version referencing this technique [26] just indicated that if detected (case-insensitive match), the
browser must append an attribute called samesite-flag to the newly created cookie with an empty value. The
following version [27], included two possible values: Strict, and Lax. If the value is set to Lax, it indicates that
the cookie should only be sent on requests within the same site, or through top-level navigation to that specific
site from other different sites. A value of Strict limits the cookie inclusion on request only to those originated
from the same site. If none of those two options is indicated (i.e., the field is either malformed or left empty), it
would be enforced as Strict. It is important to note that for instance, if www.example.com requests an image from
static.example.com, it would be considered like a same-site request. Browsers should use an up-to-date public
suffix list (such as the one maintained by Mozilla [39]) to detect these situations. A new version of the draft was
published in April 2016 [28], which includes one main modification to the previous one: if the SameSite attribute
is included, but no case-sensitive match is found for Strict or Lax, the browser should ignore it. This differs from
the preceding version, which suggested to use a Strict enforcement on this same situation. Additionally, the
revised version included the value None, which should only be set in cases where the SameSite attribute was not
indicated (defined as “monkey-patching” in the draft).
In May 2019 a completely new Internet-Draft was published titled Incrementally Better Cookies [45]. In this

document, there are two main changes inspired by the HTTP State Tokens draft [44]: (i) cookies are treated as
Lax by default (breaking backwards-compatibility), and (ii) cookies that require cross-site delivery can explicitly
opt-into that behavior indicating the None value in the SameSite attribute when created. There is an additional
important point in the second case, those cookies need the Secure attribute, indicating that they must be
transmitted over HTTPS. The last version [46], published in March 2020, included a temporal option, where
unsafe top-level requests (e.g., POST) can include recent cookies (e.g., created less than 2 minutes before) that did
not indicate the attribute.

8.2 Browser Adoption

The SameSite attribute was implemented in all three major browser families, but each family followed a different
strategy in the process. We will explain how each of them adopted this countermeasure and the market share of
each of them (based on the data of March 2020 of Stetic [60]), in order to asses the impact.

• Google Chrome (49.82% of the market): Started implementing the SameSite attribute in version 51 [10],
published mid 2016, following the draft published in April of that same year [28]. In this case, only

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 17

cookies with valid values would be used, and no default enforcement was implemented. This approach was
adopted until version 79, all together accounting for 13.49% of the total web users (27.08% of the Google
Chrome share). The more recent behaviors presented in the last draft [46] (Lax by default), started to be
implemented in version 80 [65]. However, they are currently only deployed for a limited population, in
order to monitor and evaluate the impact on the ecosystem, with the plan of gradually increasing the
distribution in subsequent rollouts.
Nowadays, Google indicates that it is still targeting an overall limited population of users with the last
Chrome version. Taking into account that 35.33% of the web users browse with this version, and that
only a small percentage of them implement have it implemented, we can expect that in total less than
2% of the total web user are running this restricted policy in their browsers. It is interesting to note
that this more restrictive SameSite behavior will not be enforced on Android WebView or Chrome for
iOS for now, reducing even more the number of users that run this functionality. Moreover, Chrome
has implemented new policies to avoid possible problems regarding this change in the cookies behavior
(e.g., LegacySameSiteCookieBehaviorEnabled), which will allow browsers with the restrictive behavior
implemented to revert to the legacy SameSite behavior [66].
Due to the extraordinary global circumstances (COVID-19), at the time of writing Chrome is temporarily
rolling back the enforcement of this SameSite restrictions, starting from April 2020 to the end of the
year [11]. According to Google, this is done because “we want to ensure stability for websites providing
essential services including banking, online groceries, government services and healthcare that facilitate our
daily life during this time”.

• Apple Safari (30.97% of the market): Apple implemented the SameSite attribute at the end of 2018 in
iOS 12 and macOS 10.14 (Mojave) [67]. The developers followed the second version of the draft about
Samesite [27], indicating that cookies will be enforced to Strict by default. At the time of its implementation,
a newer version of the draft already existed [28], where there is not default enforcement for cookies, only
the general Strict or Lax. This was reported as a bug [70], and fixed in Safari 13 (17.33% of the browser
share). However, the Safari development team indicated that they are not planning to backport this fix in
older iOS or macOS versions, and recommend developers to check the user-agent value before creating the
cookie, to act accordingly.

• Mozilla Firefox (15.28% of the market): Mozilla implemented the SameSite attribute in mid 2018, in Firefox
60 [43]. They followed the last version of the original draft [28], cookies do not have a default enforcement
and there are the Strict and Lax options if opted in. However the developers are currently making some
tests in Nightly [41], with the first version of the final draft [45], where Lax is the default. However, they
do not plan to include it in the stable version (“We are not planning to ship this feature yet. We are testing
in nightly only to see the level of breakage.”). Moreover, Mozilla is running additional tests with the last
version [42], where the developers included the option of unsafe top-level requests when cookies are newly
created (<2minutes).

To summarize, most of the browser are implementing the SameSite attribute without any default enforcement,
and just a small percentage of the global web population (maybe 1 to 3%), will have access to the restricted version
in a near future.

8.3 Experimental Study

Now that we better understand the adoption of the SameSite attribute on the browser side, we wanted to also
measure to which extent website developers implemented the SameSite attribute on the server side. Moreover,
we are interested in analyzing how this new feature could affect the attack presented in this paper. For this

, Vol. 1, No. 1, Article . Publication date: August 2020.

18 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

0 20 40 60 80 100
Cookie Percentage

102

103

104

105

W
eb

sit
es

Static first-party cookies
Dynamic first-party cookies
Third-party cookies

Fig. 7. Percentage of each type of cookies in websites (log scale).

purpose we used the Tranco 1M most accessed domains list [35], which is a combined ranking of Alexa [3], Cisco
Umbrella [13], Majestic [37] and Quantcast [49], to offer better confidence and stability.
We used a custom crawler based on the open-source web browser Chromium, in order to access the corre-

sponding websites, and we collect all the information regarding cookies (e.g., headers and creator) using a custom
instrumentation developed using the Chrome debugging protocol (CDP) [9]. Our extension loads the home page of
the domains, and then recursively visits three random pages from each website, up to a distance of three starting
from the home page (up to 13 pages per website), following the approach presented in previous studies [50]. In
order to avoid the detection of our crawler, we also implemented the most recent methods proposed to mimic
real users [16, 55, 56].

8.4 General Results

Out of the 1M websites we visited, 76% created cookies. In total, we detected the creation of 138M cookies.
However, the attack presented in this paper, does not use all the different cookies that are created in an access,
but only those first-party cookies that were dynamically generated (using JavaScript or the HTTP Set-Cookie
header). For example, if all cookies created on the website are first-party cookie generated statically (i.e., in
the main page request), the attack would not work, as those cookies would be polluted in subsequent request
performed to detect the users’ state (as previously indicated in Section 4).

Therefore, we started by checking what is the percentage of cookies that are interesting for our history sniffing
attack, and found that 56% of all the cookie creation we detected were dynamic first-party cookies, 37% were
third-party cookies, and only 7% were actually static first-party cookies. This shows that the cookies required by
our attack represent, by far, the biggest group of cookie type found on websites nowadays.

Even if indicating percentages of global numbers can help to comprehend the scale of the phenomenon, those
percentages could be misleading if only a small group of websites generate many cookies of one specific type.

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 19

0 20 40 60 80 100
Cookie Percentage

100

101

102

103

104

105

106

W
eb

sit
es

Strict samesite
Lax samesite
None samesite
Empty samesite

Fig. 8. Percentage of each type of samesite in dynamic first-party cookies (log scale).

In order to give a more accurate view of the current state, we performed an additional analysis in which we
calculated the percentage of each of those cookies types per website, and then we represented the occurrence of
each of them. Figure 7 shows three curves, representing respectively static first-party, dynamic third-party, and
third party cookies. The Y axis shows the number of websites, while the X axis shows the percentage of each type
of cookies. So, for instance, we see that around 10K sites have 90% of their cookies belonging to the dynamic,
first-party category—but less than 1K have 90% of static, first-party cookies. From the figure we can draw two
conclusions. First, that static cookies are a minority in most of the websites (left part of the graph). Second, that
dynamic, first-party cookies are a vast majority in many websites (right side of the graph). This indicates that the
cookies used for our attack exist in most websites, and that they represent the largest percentage of all cookie on
each of them.

After detecting that dynamically created first-party cookies are the most common type of cookie, we wanted
to analyze how those cookies are protected against the history sniffing method presented in this paper. In total,
around 99% of the cookies did not indicate any type of SameSite attribute, but as we indicated before, this may
misrepresent reality, because some small number of website may create a disproportionate amount of cookies.
By following the same approach described above, we calculated the percentage of dynamic first-party cookies
with the different possible SameSite attribute values, and reported the occurrence of of each of them in Figure 8
(log scale). The figure shows that Strict and None values are not very common, indicating that developers do
not normally implement neither the extreme restrictive nor the open options. The two most common values
we found are Empty and Lax, which respectively provide a milder form of protection and no explicitly selected
choice. However, the distribution resembles the one seen in Figure 7 regarding cookie type:
Lax is generally more common is low percentage cases (<30%), but Empty is the prominent choice for a very

large amount of websites. Again, this clearly indicates that dynamic first-party cookies with empty SameSite
attributes are present in most websites, and that they represent the largest percentage of all cookie on them.

, Vol. 1, No. 1, Article . Publication date: August 2020.

20 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

Table 3. Top and bottom six categories susceptible to be vulnerable (over 10k websites).

Category Websites Susceptible Improbable Safe

Shopping 82,960 83% 3% 13%
News/Media 44,251 81% 5% 14%
Vehicles 30,005 80% 4% 16%
Forums 28,602 79% 3% 18%
Restaurants/Food 24,081 79% 4% 17%
Real Estate 11,549 79% 4% 18%

Games 23,404 65% 6% 30%
Legal 32,948 62% 11% 27%
Personal Sites 11,421 62% 7% 31%
Malicious Sources 13,035 58% 5% 37%
Suspicious 42,580 50% 6% 44%
Web Ads/Analytics 26,089 24% 1% 74%

If we now take into account the browser adoption for the SameSite attribute, we can clearly see that today the
protection offered by the SameSite attribute against our attacks is very small. Only a very small percentage of
websites are protecting their cookies (Strict or Lax), and a very small percentage of the total web user population,
as calculated in the previous subsection, is using (or will be using in the near future) a browser that implements
restrictive enforcements (e.g., Lax by default) [46].

8.5 Attack Susceptibility

We wanted to go one step further, so we calculated which is the percentage of websites that, due to the little
implementation of the SameSite attribute described in the previous subsection, are susceptible to be vulnerable
to our technique. In order to be conservative, we will separate those websites that have unprotected identifier
cookies from those that do not, assuming that is more likely that a cookie that stores an identifier can trigger a
different path on the server request processing code. To identify possible identifiers we pre-filter cookies by using
zxcvbn method proposed in a recent GDPR related work [52]. To be as precise as possible, we divided website in
three different groups:
• Susceptible: Created dynamic first-party cookies that contain possible identifiers, without using the
SameSite attribute, or with None value.
• Improbable: Similar to susceptible, but in this case the cookies did not contain a likely identifier value.
• Safe: Did not create dynamic first-party cookies that could make the site vulnerable to our attack.

Overall, 65% of all the websites with cookies are susceptible of being vulnerable, 7% were improbable to be
vulnerable, and only 29% were certainly safe. It is important to note that this numbers do not indicate that those
website are in fact vulnerable, as their server-side code may not depend on certain cookies to trigger different code
paths. However, we can say that those websites can be vulnerable based on the adoption of the countermeasures
currently offered.
Finally, we wanted to check if there are differences between website categories (classified using website-to-

category data from a commercial engine [63, 64]). We performed this same classification based on that data, and
reported the results of the top and bottom six categories in Table 3. Results hints that website with high user
interaction rate (such as shopping, news, and forums) are more prone to be vulnerable, while security/privacy
dubious website belonging to the malicious, suspicious, and analytics categories, are less prone. One of the possible

, Vol. 1, No. 1, Article . Publication date: August 2020.

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 21

reasons for this is that highly interactive website create multiple dynamic first-party cookies to communicate
with the user, and the second group of websites rely more often on third-party cookies.

This analysis demonstrates that in order to be completely protected from the technique presented in this paper,
all cookies must set the SameSite attribute with the Strict or Lax value. As long as one of the cookies involved
does not specify this option, the attack would still work. Due to the sensitive nature of login cookies, they could
be more prone to use this option. Nevertheless, its important to remark that some sites could lose part of their
core functionalities as a result of using Strict or Lax SameSite cookies. In fact, many types of websites, such as
social networks or cashback services, rely on cookies to be added in third-party requests, and therefore the global
applicability of this countermeasure could be limited in several website categories.

9 RELATED WORK

History sniffing attacks are a widely explored topic with different techniques and solutions presented over the
years. Clover [15] found that it was possible to identify previously visited websites just checking the CSS:visited
style of a specially crafted link though the getComputedStyle method in JavaScript. Many other similar attacks
appeared using different CSS-based techniques [25, 30, 59, 72]. Kotcher et al. [32] discovered that besides from the
above mentioned attacks, the usage of CSS filters allows the involuntary revelation of sensitive data, such as text
tokens, exploiting time differences to render various DOM trees. Weinber et al. [71] followed another direction,
using interactive techniques to get the information. While these attacks are much slower, the protection methods
are in principle more difficult to implement.

With a different approach, and leaving CSS aside, Felten and Schneider [20] introduced web timing attacks as a
tool to compromise users private data and, specifically, their web-browsing history. Particularly, they proposed a
method based on leveraging the different forms of web browser cache to obtain user specific browsing information.
By measuring the time needed to access certain data from a third-party website, the attacker could determine if
that specific data was cached or not, indicating a previous access. Some years later, Jia et al. [31] analyzed the
possibility of identifying the geo-location of a given visitor using to the customization of services performed by
websites. As this location-sensitive content is also cached, it is possible to determine the location by checking
this concrete data and without relying in any other technique.

Bortz et al. [7] organized JavaScript web timing attacks in two different types of attacks: (i) direct timing, based
on measuring the difference in time of diverse HTTP requests and (ii) cross-site timing, that allows to retrieve
private client-side data. The first type could expose data that may be used to prove the validity of specific user
information in certain secure website, such as the username. The second attack type follows the same line of
previous work by Felten and Schneider. They also performed some experiments that suggested that these timing
vulnerabilities were more common than initially expected.

Two recent studies show that these attacks are far from being solved. Van Goethem et al. [69] proposed new
timing techniques based on estimating the size of cross-origin resources. Since the measurement starts after
the resources are downloaded, it does not suffer from unfavorable network conditions. The study also shows
that these attacks could be used in various platforms, increasing the attack surface and the number of potential
victims. The specific size of the resource can leak the current state of the user in the website. Lee et al. [36]
demonstrated that using HTML5’s AppCache functionality (to enable offline access), an attacker can correctly
identify the status of a target URL. This information can later be used to check if a user is logged or not in certain
website.

However, these timing techniques can generally only determine if the user is logged on a specific website or
some isolated data, but not if she has just previously accessed it. Moreover, some of them use resources easily
cleanable by the user, like different cache options, as they do not imply any visible consequence to the user.

, Vol. 1, No. 1, Article . Publication date: August 2020.

22 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

10 CONCLUSIONS

Many different threats against the users security and privacy can benefit from a list of websites previously
accessed by the user and a list of services where the user is logged in or ever logged in.
We showed that simply using cookies of third-party websites, is possible the detect the specific state (e.g.,

accessed and logged) of a user in certain website, which outperforms previous techniques that are only able to
detect one single state. In particular, we present a novel timing side-channel attack against server-side request
processing schema. This technique is capable of detecting execution paths with more than 5 milliseconds of
difference between each other.
We also analyzed real-world servers to detect the percentage of websites vulnerable to the presented attack.

All previous work analyzed less than 10 websites (manually), as they generally only detect the logged status. We
performed this same analysis, and additionally, we performed an automated check of 10k websites from different
categories and number of users. Results show that more than half of the websites are vulnerable to our technique.
In this extended version, we also measured to which extent website developers implemented countermeasures in
the Top 1M websites, and found that 65% of the websites with cookies are susceptible of being vulnerable.

ACKNOWLEDGMENTS

This work is partially supported by the Basque Government under a pre-doctoral grant given to Iskander
Sanchez-Rola.

REFERENCES

[1] Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., and Preneel, B. FPDetective: dusting the web for fingerprinters.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS) (2013).

[2] Akkus, I. E., Chen, R., Hardt, M., Francis, P., and Gehrke, J. Non-tracking web analytics. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CSS) (2012).

[3] Amazon Web Services. Alexa top sites. https://aws.amazon.com/es/alexa-top-sites/, 2018.
[4] Backes, M., Kate, A., Maffei, M., and Pecina, K. Obliviad: Provably secure and practical online behavioral advertising. In Proceedings

of the IEEE Symposium on Security and Privacy (Oakland) (2012).
[5] Bilenko, M., Richardson, M., and Tsai, J. Targeted, not tracked: Client-side solutions for privacy-friendly behavioral advertising. In

Proceedings of the Privacy Enhancing Technologies (PETS) (2011).
[6] Blocksi. Web content filtering. http://www.blocksi.net/, 2018.
[7] Bortz, A., and Boneh, D. Exposing private information by timing web applications. In Proceedings of the International conference on

World Wide Web (WWW) (2007).
[8] Cao, Y., Li, S., and Wijmans, E. (Cross-)browser fingerprinting via os and hardware level features. In Proceedings of the Network and

Distributed System Symposium (NDSS) (2017).
[9] ChromeDevTools. DevTools Protocol API. https://github.com/ChromeDevTools/debugger-protocol-viewer, 2019.
[10] Chromium Blog. Chrome 51 Beta: Credential Management API and reducing the overhead of offscreen rendering. https://blog.

chromium.org/2016/04/chrome-51-beta-credential-management.html, 2016.
[11] Chromium Blog. Temporarily rolling back SameSite Cookie Changes. https://blog.chromium.org/2020/04/temporarily-

rolling-back-samesite.html, 2020.
[12] Cisco Adaptive Security Appliance. CVE-2019-1713. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1713,

2019.
[13] Cisco Umbrella. Umbrella Popularity List. https://umbrella-static.s3-us-west-1.amazonaws.com/index.html, 2019.
[14] Cloudacl. Web security service. http://www.cloudacl.com/, 2018.
[15] Clover, A. Css visited pages disclosure. BUGTRAQ mailing list posting (2002).
[16] Dymo. Missing Accept_languages in Request for Headless Mode. https://bugs.chromium.org/p/chromium/issues/detail?id=

775911, 2017.
[17] Englehardt, S., and Narayanan, A. Online tracking: A 1-million-site measurement and analysis. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security (CCS) (2016).
[18] Directive 2009/136/EC of the European Parliament and of the Council of 25 November 2009. Official Journal of the European Union

(2009).

, Vol. 1, No. 1, Article . Publication date: August 2020.

https://aws.amazon.com/es/alexa-top-sites/
http://www.blocksi.net/
https://github.com/ChromeDevTools/debugger-protocol-viewer
https://blog.chromium.org/2016/04/chrome-51-beta-credential-management.html
https://blog.chromium.org/2016/04/chrome-51-beta-credential-management.html
https://blog.chromium.org/2020/04/temporarily-rolling-back-samesite.html
https://blog.chromium.org/2020/04/temporarily-rolling-back-samesite.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1713
https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
http://www.cloudacl.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=775911
https://bugs.chromium.org/p/chromium/issues/detail?id=775911

Cookies from the Past: Timing Server-Side Request Processing Code for History Sniffing • 23

[19] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). Official Journal of the European Union (2016).

[20] Felten, E. W., and Schneider, M. A. Timing attacks on web privacy. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2000).

[21] Fortinet. Fortiguard web filtering. http://www.fortiguard.com/, 2018.
[22] Fredrikson, M., and Livshits, B. Repriv: Re-imagining content personalization and in-browser privacy. In Proceedings of the IEEE

Symposium on Security and Privacy (Oakland) (2011).
[23] Google. Leak of visited status of page in blink. https://chromereleases.googleblog.com/2018/05/stable-channel-update-

for-desktop_58.html, 2018.
[24] Guha, S., Cheng, B., and Francis, P. Privad: practical privacy in online advertising. In Proceedings of the USENIX conference on

Networked Systems Design and Implementation (NDSI) (2011).
[25] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk, J. Scriptless attacks: stealing the pie without touching the sill. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CSS) (2012).
[26] HTTPbis Working Group. Same-site Cookies (draft-west-first-party-cookies-05). https://tools.ietf.org/html/draft-west-

first-party-cookies-05#section-4.1, 2016.
[27] HTTPbis Working Group. Same-site Cookies (draft-west-first-party-cookies-06). https://tools.ietf.org/html/draft-west-

first-party-cookies-06#section-4.1, 2016.
[28] HTTPbis Working Group. Same-site Cookies (draft-west-first-party-cookies-07). https://tools.ietf.org/html/draft-west-

first-party-cookies-07#section-4.1, 2016.
[29] Internet Engineering Task Force. Http state management mechanism. https://tools.ietf.org/html/rfc6265, 2016.
[30] Janc, A., and Olejnik, L. Web browser history detection as a real-world privacy threat. In Proceedings of the European Symposium on

Research in Computer Security (ESORICS) (2010).
[31] Jia, Y., Dong, X., Liang, Z., and Saxena, P. I know where you’ve been: Geo-inference attacks via the browser cache. IEEE Internet

Computing 19 (2015).
[32] Kotcher, R., Pei, Y., Jumde, P., and Jackson, C. Cross-origin pixel stealing: timing attacks using css filters. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security (CCS) (2013).
[33] Laperdrix, P., Rudametkin, W., and Baudry, B. Beauty and the beast: Diverting modern web browsers to build unique browser

fingerprints. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland) (2016).
[34] Lapowsky, I. California unanimously passes historic privacy bill. Wired, 06 2018.
[35] Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., and Joosen, W. Tranco: A research-oriented top sites

ranking hardened against manipulation. In Annual Network and Distributed System Security Symposium (NDSS) (2019).
[36] Lee, S., Kim, H., and Kim, J. Identifying cross-origin resource status using application cache. In Proceedings of the Network and Distributed

System Symposium (NDSS) (2015).
[37] Majestic. The Majestic Million. https://majestic.com/reports/majestic-million, 2019.
[38] Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting canvas in HTML5. In Proceedings of the Web 2.0 Workshop on Security and

Privacy (W2SP) (2012).
[39] Mozilla. Public Suffix List. https://publicsuffix.org/, 2007.
[40] Mozilla. Privacy and the :visited selector. https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_

selector, 2018.
[41] Mozilla Bugzilla. Enable sameSite=lax by default on Nightly. https://bugzilla.mozilla.org/show_bug.cgi?id=1604212, 2019.
[42] Mozilla Bugzilla. Implement sameSite lax-by-default 2 minutes tolerance for unsafe methods. https://bugzilla.mozilla.org/

show_bug.cgi?id=1608384, 2019.
[43] Mozilla Security Blog. Supporting Same-Site Cookies in Firefox 60. https://blog.mozilla.org/security/2018/04/24/same-

site-cookies-in-firefox-60/, 2018.
[44] Network Working Group. HTTP State Tokens (draft-west-http-state-tokens-00). https://tools.ietf.org/html/draft-west-

http-state-tokens-00, 2019.
[45] Network Working Group. Incrementally Better Cookies (draft-west-cookie-incrementalism-00). https://tools.ietf.org/html/

draft-west-cookie-incrementalism-00#section-3.1, 2019.
[46] Network Working Group. Incrementally Better Cookies (draft-west-cookie-incrementalism-01). https://tools.ietf.org/html/

draft-west-cookie-incrementalism-01#section-3.1, 2020.
[47] Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., and Vigna, G. Cookieless monster: Exploring the ecosystem

of web-based device fingerprinting. In Proceedings of IEEE Symposium on Security and Privacy (Oakland) (2013).
[48] phpMyAdmin. CVE-2019-12616. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12616, 2019.
[49] Quantcast. Audience Insights That Help You Tell Better Stories. https://www.quantcast.com/top-sites/, 2019.

, Vol. 1, No. 1, Article . Publication date: August 2020.

http://www.fortiguard.com/
https://chromereleases.googleblog.com/2018/05/stable-channel-update-for-desktop_58.html
https://chromereleases.googleblog.com/2018/05/stable-channel-update-for-desktop_58.html
https://tools.ietf.org/html/draft-west-first-party-cookies-05#section-4.1
https://tools.ietf.org/html/draft-west-first-party-cookies-05#section-4.1
https://tools.ietf.org/html/draft-west-first-party-cookies-06#section-4.1
https://tools.ietf.org/html/draft-west-first-party-cookies-06#section-4.1
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-4.1
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-4.1
https://tools.ietf.org/html/rfc6265
https://majestic.com/reports/majestic-million
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://bugzilla.mozilla.org/show_bug.cgi?id=1604212
https://bugzilla.mozilla.org/show_bug.cgi?id=1608384
https://bugzilla.mozilla.org/show_bug.cgi?id=1608384
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://tools.ietf.org/html/draft-west-http-state-tokens-00
https://tools.ietf.org/html/draft-west-http-state-tokens-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00#section-3.1
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00#section-3.1
https://tools.ietf.org/html/draft-west-cookie-incrementalism-01#section-3.1
https://tools.ietf.org/html/draft-west-cookie-incrementalism-01#section-3.1
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12616
https://www.quantcast.com/top-sites/

24 • Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

[50] Sanchez-Rola, I., Balzarotti, D., Kruegel, C., Vigna, G., and Santos, I. Dirty Clicks: a Study of the Usability and Security Implications
of Click-related Behaviors on the Web. InWorld Wide Web Conference (WWW) (2020).

[51] Sanchez-Rola, I., Balzarotti, D., and Santos, I. BakingTimer: Privacy Analysis of Server-Side Request Processing Time. In Annual
Computer Security Applications Conference (ACSAC) (2019).

[52] Sanchez-Rola, I., Dell’Amico, M., Kotzias, P., Balzarotti, D., Bilge, L., Vervier, P.-A., and Santos, I. Can I Opt Out Yet? GDPR and
the Global Illusion of Cookie Control. In ACM Asia Conference on Computer and Communications Security (AsiaCCS) (2019).

[53] Sanchez-Rola, I., and Santos, I. Knockin’ on Trackers’ Door: Large-Scale Automatic Analysis of Web Tracking. In Proceedings of the
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA) (2018).

[54] Sanchez-Rola, I., Santos, I., and Balzarotti, D. Clock Around the Clock: Time-Based Device Fingerprinting. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security (CCS) (2018).

[55] Sangaline, E. Making Chrome Headless Undetectable. https://intoli.com/blog/making-chrome-headless-undetectable/,
2017.

[56] Sangaline, E. It is Not Possible to Detect and Block Chrome Headless. https://intoli.com/blog/not-possible-to-block-
chrome-headless/, 2018.

[57] Schwartz, J. Giving the web a memory cost its users privacy. http://www.nytimes.com/2001/09/04/technology/04COOK.html,
2001.

[58] Singer, N. Do not track? advertisers say “don’t tread on us”. http://www.nytimes.com/2012/10/14/technology/do-not-track-
movement-is-drawing-advertisers-fire.html, 2012.

[59] Smith, M., Disselkoen, C., Narayan, S., Brown, F., and Stefan, D. Browser history re: visited. In Proceedings of the USENIX Workshop
on Offensive Technologies (WOOT) (2018).

[60] Stetic. Browser Statistics March 2020. https://www.stetic.com/market-share/browser/, 2020.
[61] Sutton, M. A wolf in sheep’s clothing, the dangers of persistent web browser storage. Black Hat DC Briefings (BHDC) (2009).
[62] Swartz, A. Web.py web framework. http://webpy.org/, 2018.
[63] Symantec. The Need for Threat Risk Levels in Secure Web Gateways. https://www.symantec.com/content/dam/symantec/docs/

white-papers/need-for-threat-tisk-Levels-in-secure-web-gateways-en.pdf, 2017.
[64] Symantec. WebPulse. https://www.symantec.com/content/dam/symantec/docs/white-papers/webpulse-en.pdf, 2017.
[65] The Chromium Projects. SameSite Updates. https://www.chromium.org/updates/same-site, 2016.
[66] The Chromium Projects. Cookie Legacy SameSite Policies. https://www.chromium.org/administrators/policy-list-3/cookie-

legacy-samesite-policies, 2020.
[67] The WebKit Open Source Project. Implement Same-Site cookies. https://github.com/WebKit/webkit/commit/

91ac5b831f84731aad164b48d53007f6e82d60d2, 2018.
[68] Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H., and Barocas, S. Adnostic: Privacy preserving targeted advertising. In

Proceedings of the Network and Distributed System Symposium (NDSS) (2010).
[69] Van Goethem, T., Joosen, W., and Nikiforakis, N. The clock is still ticking: Timing attacks in the modern web. In Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security (CCS) (2015).
[70] WebKit Bugzilla. Bug 198181: Cookies with SameSite=None or SameSite=invalid treated as Strict. https://bugs.webkit.org/show_

bug.cgi?id=198181, 2019.
[71] Weinber, Z., Chen, E., Jayaraman, P., and Jackson, C. I still know what you visited last summer. In Proceedings of the IEEE Symposium

on Security and Privacy (Oakland) (2011).
[72] Wondracek, G., Holz, T., Kirda, E., and Kruegel, C. A practical attack to de-anonymize social network users. In Proceedings of the

IEEE Symposium on Security and Privacy (Oakland) (2010).
[73] World Wide Web Consortium. User timing. https://www.w3.org/TR/user-timing/, 2018.

, Vol. 1, No. 1, Article . Publication date: August 2020.

https://intoli.com/blog/making-chrome-headless-undetectable/
https://intoli.com/blog/not-possible-to-block-chrome-headless/
https://intoli.com/blog/not-possible-to-block-chrome-headless/
http://www.nytimes.com/ 2001/09/04/technology/04COOK.html
http://www.nytimes.com/2012/10/14/technology/do-not-track-movement-is-drawing-advertisers-fire.html
http://www.nytimes.com/2012/10/14/technology/do-not-track-movement-is-drawing-advertisers-fire.html
https://www.stetic.com/market-share/browser/
http://webpy.org/
https://www.symantec.com/content/dam/symantec/docs/white-papers/need-for-threat-tisk-Levels-in-secure-web-gateways-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/need-for-threat-tisk-Levels-in-secure-web-gateways-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/webpulse-en.pdf
https://www.chromium.org/updates/same-site
https://www.chromium.org/administrators/policy-list-3/cookie-legacy-samesite-policies
https://www.chromium.org/administrators/policy-list-3/cookie-legacy-samesite-policies
https://github.com/WebKit/webkit/commit/91ac5b831f84731aad164b48d53007f6e82d60d2
https://github.com/WebKit/webkit/commit/91ac5b831f84731aad164b48d53007f6e82d60d2
https://bugs.webkit.org/show_bug.cgi?id=198181
https://bugs.webkit.org/show_bug.cgi?id=198181
https://www.w3.org/TR/user-timing/

	Abstract
	1 Introduction
	2 Background
	2.1 Browser Cookies
	2.2 History Sniffing
	2.3 Threat Model

	3 BakingTimer
	3.1 Retrieval Phase
	3.2 Comparison Phase
	3.3 BakingTimer's Resolution

	4 Experiments
	4.1 Domain Selection
	4.2 Methodology
	4.3 Highly Popular Websites
	4.4 Privacy-Sensitive Websites

	5 Stability Test
	6 Login Detection
	6.1 Highly Accessed Websites
	6.2 Private Personal Information Websites
	6.3 Persistent Login Information

	7 Discussion
	7.1 Result Interpretation
	7.2 Comparison with Similar Techniques

	8 Countermeasures Analysis
	8.1 Draft Evolution
	8.2 Browser Adoption
	8.3 Experimental Study
	8.4 General Results
	8.5 Attack Susceptibility

	9 Related Work
	10 Conclusions
	References

