
1

Trouble Over-The-Air: An Analysis of FOTA Apps in the Android Ecosystem

Eduardo Blázquez†, Sergio Pastrana†, Álvaro Feal∗†, Julien Gamba∗†, Platon Kotzias‡, Narseo Vallina-Rodriguez∗§ and Juan Tapiador†

∗IMDEA Networks Institute, †Universidad Carlos III de Madrid, ‡NortonLifelock Research Group, §ICSI

Abstract—Android firmware updates are typically managed by
the so-called FOTA (Firmware Over-the-Air) apps. Such apps
are highly privileged and play a critical role in maintaining
devices secured and updated. The Android operating system
offers standard mechanisms—available to Original Equipment
Manufacturers (OEMs)—to implement their own FOTA apps
but such vendor-specific implementations could be a source of
security and privacy issues due to poor software engineering
practices. This paper performs the first large-scale and systematic
analysis of the FOTA ecosystem through a dataset of 2,013
FOTA apps detected with a tool designed for this purpose over
422,121 pre-installed apps. We classify the different stakeholders
developing and deploying FOTA apps on the Android update
ecosystem, showing that 43% of FOTA apps are developed by
third parties. We report that some devices can have as many
as 5 apps implementing FOTA capabilities. By means of static
analysis of the code of FOTA apps, we show that some apps
present behaviors that can be considered privacy intrusive, such
as the collection of sensitive user data (e.g., geolocation linked
to unique hardware identifiers), and a significant presence of
third-party trackers. We also discover implementation issues
leading to critical vulnerabilities, such as the use of public
AOSP test keys both for signing FOTA apps and for update
verification, thus allowing any update signed with the same key
to be installed. Finally, we study telemetry data collected from
real devices by a commercial security tool. We demonstrate that
FOTA apps are responsible for the installation of non-system
apps (e.g., entertainment apps and games), including malware
and Potentially Unwanted Programs (PUP). Our findings suggest
that FOTA development practices are misaligned with Google’s
recommendations.

I. INTRODUCTION

Android is now the most used operating system ever, with
over 2.5 billion active Android devices [25] and a global
market share of over 40% [21]. Part of Android’s success
is due to the openness of the platform, which allows any
device manufacturer to customize and deploy their own Android
version. Paradoxically, this open model has resulted in a poorly
understood ecosystem of actors that play key roles at different
stages of the Android supply chain [43]. This model has also
accentuated platform fragmentation problems despite Google’s
efforts for harmonization [4]: millions of devices got stuck on
outdated and no-longer supported Android versions [53], [58].

Platform updates are a particularly critical and highly
privileged element of the Android ecosystem. Once a patch
or a new Android version is released, each vendor needs to
ship it over-the-air to their userbase. A FOTA (Firmware-Over-
The-Air) app is the software responsible for downloading and
applying these updates on the device, receiving this name from
the way in which firmware updates are shipped. Traditionally,
device vendors have been named responsible for applying
system updates (including security patches) because they are
technically the ones that build the operating system after

customizing the Android Open Source Project (AOSP) code
maintained by Google. In truth however, updates are often
delegated to third- and even fourth-party services in the Android
ecosystem. This state-of-affairs not only accentuates platform
fragmentation, but also opens the ground for potential abuse
if appropriate supervisory mechanisms are not in place. As a
result of their privileged position, an attacker (or a deceptive
FOTA provider or partner) could install potentially harmful
system-level components over a large userbase, as it has already
occurred in desktop platforms [16].

In Android, there is anecdotal evidence of at least one so-
called FOTA app being used to distribute potentially harmful
apps. This was the case of Adups [19], [47], a Chinese wireless
update service provider offering support to millions of low-cost
Android vendors, which was reported as spyware. However,
the system update components in Android devices have been
largely overlooked by the research community. To fill this
gap, this paper studies in depth the software responsible for
the platform update process across Android devices and the
ecosystem of FOTA providers offering such services worldwide.

In this paper, we perform the first systematic analysis of
Android FOTA components at scale. We characterize the
underlying FOTA supply chain, and the privacy and security
risks of these components. We focus on those providers making
use of the standard capabilities offered by AOSP to implement
FOTA components. We rely on the dataset of pre-installed
applications collected by Gamba et al. [43] for our analysis.
As of June 2020, this dataset contains 422,121 pre-installed apps
collected from 40,165 users worldwide and covering 12,539
different devices. We extend the coverage due to the analysis of
compiled DEX files (ODEX), and also complement this dataset
with reputation logs and installation telemetry offered by a
major security firm, NortonLifeLock. Our analysis leverages
this dataset to make the following contributions aimed at better
understanding the Android FOTA ecosystem:
• We develop a tool for automatic detection of apps implement-

ing FOTA capabilities. This tool is based on code features
and signatures extracted from official Android documentation,
enhanced with a manual inspection of 18 FOTA apps from
main Original Equipment Manufacturers (OEM) vendors
and well-known third-party FOTA providers (§IV). This
process allows us to obtain 4 main signals to detect FOTA
components, and 11 secondary ones related to additional
installation capabilities, with each signal showing varying
levels of confidence. We also design a helper tool to recover
DEX files from ODEX binaries, since many of the pre-
installed apps present in the dataset are in this format.
We automatically discover and classify 2,013 FOTA apps
deployed in real-world devices. A significant number of these
have dual behavior as they can (silently) install both system



2

and non system apps. Upon manual verification, we find no
false positives (i.e., wrongfully detected FOTA apps).

• We study the developer ecosystem behind FOTA apps to
draw a picture of its supply chain. We observe that FOTA
providers can be classified in four different categories: (i)
OEMs, (ii) Mobile Network Operators (MNO), (iii) System
On Chip (SoC), and (iv) Specialized FOTA Developers (SFD)
(§V). We find that 43% of FOTA apps are developed by a
third party and that there are generally multiple apps with
FOTA capabilities in a single device, with some devices
having as many as 5 FOTA-enabled apps. We also find a
critical security issue: 40 FOTAs (in devices from 20 brands)
are signed with test-keys part of the AOSP, thus allowing
any app signed with the same key to gain system privileges.

• We statically analyze each discovered FOTA to identify poten-
tial security and privacy threats (§VI). We find the presence
of social networks, advertising or tracking SDKs in 10% of
the FOTA apps analyzed. We also observe potentially privacy-
intrusive behaviors such as the sharing of GPS-level location
data and unique device identifiers with online servers. Some
FOTA apps use their own SharedUserID, thus allowing any
app from the same developer to gain the privileges and
permissions from the FOTA component. A common bad
coding practice is the lack of verification of the downloaded
updates, thus going against Google’s recommendation. We
also discover another critical vulnerability: 5% of the 1,747
devices where we find an otacerts.zip file (which lists
the entities that can ship uploads) contain an AOSP default
key, thus accepting any update signed with the same key.

• We complement our static analysis with telemetry data from
a security vendor, NortonLifeLock, to analyze the behavior
of FOTA apps in the wild (§VII). We confirm that FOTA
apps, in addition to system updates, are used for secondary
or commercial purposes—possibly for promoting third-party
apps. We also find FOTA apps distributing unwanted apps,
mostly Potentially Unwanted Programs (PUP). We detect that
92% of the apps installed by one FOTA app are malware.
Our findings confirm that FOTA apps might constitute

an overlooked vector for security and privacy incidents. We
consider this particularly critical because of its impact over a
very large user base, as some FOTAs deliver updates to tens
of millions of devices worldwide. We reported our findings to
Google and the main vendors involved, and make our tools [11],
[14] and aggregated dataset [5] available to the community.

II. ANDROID SYSTEM UPDATES

In Android, system update capabilities are implemented by
a privileged system component called the Firmware Over-The-
Air (FOTA) app. Android has supported various mechanisms
to update pre-installed software and other system- or vendor-
specific components stored in the system partition. These
mechanisms have evolved as new OS versions were released,
but all of them rely on modifying the (otherwise) read-only
system partition. While Android offers standard mechanisms,
some OEMs implement their own ad-hoc implementations via
custom vendor libraries and other privileged apps. There is
not a clear set of rules that a FOTA app must follow. Google

provides recommendations of the steps to follow in the update
process [3], [20]: (1) retrieving update information from the
update server (i.e., description and URL of the update zip file);
(2) downloading the update package; (3) verifying the package;
(4) installing the update; and (5) rebooting the device into the
new system. This section provides a historical overview and a
description of the system update mechanisms implemented in
the official AOSP.

A. Recovery system updates

This update process uses the Android recovery partition and
starts by downloading a zip file from the update server. This
zip file includes a patch script with the update instructions,
a binary interpreter for the update file called update_binary
(based on a template from AOSP [9]), additional files to be
added to the system, a metadata file, and (optionally) a file
with an updated set of signing keys. This is the recommended
mechanism for devices running Android versions up to 7.0 to
perform system updates [38], [50], as well as newer devices
without two system partitions (see §II-B). For security reasons,
the update file must be signed with the provider’s key, which
is later checked against the system OTA certificates stored in
the otacerts.zip file by the system update API. The owners
of the certificates included in otacerts.zip can thus install
system packages as part of the update process.

Android provides FOTA developers with the
RecoverySystem library [6] that implements this process. The
library implements two key functions, (i) verifyPackage()
which verifies the downloaded zip’s signature against the
certificates in otacerts.zip; and (ii) installPackage(),
which calls the recovery service and writes into the
bootloader control block. Developers may not use this
library and perform installations by writing directly into
/cache/recovery/command. In both cases, simple commands
(e.g., --update_package or --wipe_data ) are written for
recovery to apply requested changes once device is rebooted.

B. A/B seamless system updates

Android 7.0 introduced a new update mechanism known as
A/B system updates or, simply, seamless updates. This method
uses two separate disk partitions or slots: one where the system
currently runs, called the current slot; and an unused slot, which
is modified during the update process. Each slot has a number
of attributes. The active attribute defines the slot from which
the device can boot. After the update, the unused slot becomes
active and, upon reboot, the bootloader will try to boot from it.
If booting succeeds, an Android daemon called update_verifier
marks the current active slot as successful.

This update process aims to ensure that there is always a
workable booting system on disk during the update process.
Thus, if the bootloader is not able to boot the new version,
it can roll back to the old one. Another advantage is the
possibility of updating the system while it is running, thus
improving the usability. Finally, this process also allows for
a streaming update where patches are applied directly to
a partition while downloading, so no cache or extra data
space is needed. The UpdateEngine class [2] provides the
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API for seamless updates. The applyPayload() method
interfaces with the update_engine Android daemon [1], which
effectively applies the update and uses the boot_control HAL
(Hardware Abstraction Layer) interface to reboot the device.

C. Projects Treble and Mainline

Device vendors are traditionally responsible for system
updates. However, many vendors have not been able to ship
updates at a reasonable pace, resulting in a substantial number
of outdated and unpatched Android versions [53]. Google has
recently put forward two initiatives to alleviate the problems
for vendors to adapt their code to AOSP and improve the
distribution of updates. Project Treble [17], announced in 2017,
tries to help vendors to build their own Android version from
a new AOSP release by separating customized vendor software
(provided by silicon manufacturers and other vendor-specific
suppliers) from the core Android OS framework. Additionally,
Project Mainline [15], launched in 2019 on top of Project
Treble, allows to update core OS components through Google
Play, similar to app updates. This allow critical security updates
to be delivered without intervention from the manufacturer.

These mechanisms improves devices’ security by reducing
the time it takes to push an update. Furthermore, FOTA apps
would no longer be needed for applying patches in AOSP
code. Still, studying the ecosystem of FOTA apps is important
and necessary, as these are needed for deploying HAL and
vendors-specific updates. Also, only a few of Google’s certified
vendors (devices that passed a series of tests and fulfill a set
of requirements [70]) implement this update mechanism at
the time of this writing [15] (see Appendix A). FOTA apps
are present in both certified and non-certified vendors with
capabilities for installing anything on those devices. An analysis
of these projects is out of the scope of this paper due to the
lack of representative data, and it is left for future work.

III. DATASET

We use two complementary datasets in this paper: (1)
Firmware Scanner’s set of pre-installed apps, and (2) app
reputation and installation logs obtained from NortonLifeLock.
For clarity and consistency purposes, we will refer to apps as
a unique instance of an Android app by its MD5 hash, and to
packages as all app versions under the same package name.
Firmware Scanner: Most FOTA apps come pre-installed on
Android devices, and are not available on public app stores.
To overcome this limitation, we got access to the dataset
of pre-installed apps collected by Gamba et al. [43] using
Firmware Scanner, a purpose-built app publicly available on
Google Play [13]. Firmware Scanner extracts pre-installed
apps from the possible system partitions paths, (i.e., /system,
/vendor, /oem, /odm and /product). Preinstalled apps are
crowd-sourced in a privacy-preserving fashion from volunteers
without collecting any personal data from users. We refer
the reader to the paper by Gamba et al. [43] for a technical
description of Firmware Scanner and for a discussion of its
ethical implications. As of June 2020, this dataset contains
422,121 pre-installed apps collected from 40,165 users, from
184 countries, with 26% of the users in Europe, 26% in America,

and 40% in Asia according to the Mobile Country Codes (MCC)
of the users. We discard 152,097 apps that were only found
on rooted devices. In doing so, we aim at maximizing the
validity of our results by focusing on devices that have not
been tampered with by the user, or a malicious actor.
Reputation and Installation Logs: One critical aspect to
consider in the characterization and analysis of FOTA apps
is what type of software they are installing on user devices.
We use a dataset provided by a NortonLifeLock that cap-
tures the presence of apps in real devices and the process
responsible for their installation. The customers opted-in to
share their data and the devices are anonymized to preserve
their privacy. The dataset includes only app metadata and
not the actual apps (i.e., APK files). A reputation log record
contains an anonymized device identifier, APK’s SHA256 hash,
package name, signer key, parent package name (potentially
null) and, for a subset of those logs, the parent APK’s
SHA256 hash and signer key. The parent package information
is obtained via the Android’s Package Installer using the
PackageInstaller.getInstallerPackageName method. As
such, this dataset is limited to installations from FOTA apps
that invoke the PackageInstaller. We further discuss how
this limitation affects our analysis in §VII-A.

Customer devices regularly query a cloud-based reputation
system to obtain reputation for the APKs installed on the
device. This means that the client may query the same APK
multiple times. To remove duplicated events we obtain the
earliest date that a record is observed in a device and use it as
an approximation of the installation time of the app. In total,
this dataset contains 1.6 B installation events from 19.3 M
Android devices collected from January to December 2019.
Prior work has used the same dataset to analyze distribution
vectors of unwanted apps [48]. In this work, we extend the
dataset to contain installation events for a 12-months period.

IV. DISCOVERY OF FOTA APPS

Detecting FOTA apps is a challenging process, as these
apps can differ in their implementation details. FOTA apps
may not have distinctive package names, their functionality
may be split among multiple apps, or may contain customized
code. Thus, we design FOTA Finder, a tool to automatically
identify and classify FOTA capabilities in a given APK file.
In this section, we first describe FOTA Finder (§IV-A) and
its limitations (§IV-B). We then present the results obtained
over our dataset of pre-installed apps (§IV-C), and validate the
accuracy of this discovery process (§IV-D).

A. FOTA Finder

We begin our process by extracting FOTA-specific code
fingerprints from Google’s FOTA documentation and manually
analyzing the code of 18 well-known FOTA apps. To collect
these apps, we search the Firmware Scanner dataset for apps
with descriptive names—i.e., package names that contain terms
such as update or fota. Armed with a complete list of
code fingerprints, we build FOTA Finder to automatically
classify a given APK as FOTA or not. The tool is based on
Androguard [36], an Android analysis framework that offers
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Signal Description

RV Call to the method verifyPackage from the API
class android.os.RecoverySystem

RI Call to the method installPackage from the API
class android.os.RecoverySystem

CMD Use of the strings “/cache/recovery/command”
and “--update-package” in the code

A/B Call to the method applyPayload from the API class
android.os.UpdateEngine

Table I: Features for detecting FOTA apps.

APIs to facilitate static analysis of Android apps. For each APK,
FOTA Finder first detects the compiled code in DEX (Dalvik
EXecutable) format that is typically included in one or more
classes.dex files. If an app uses ahead-of-time optimized
code, FOTA Finder parses the ODEX file and extracts the
original DEX file(s). Since the ODEX file format is not publicly
documented (the only source being the dex2oat tool [59]), we
go through a reverse engineering effort to develop a tool for
DEX extraction, Dextripador [11]. Finally, we parse the DEX
code for specific method calls and strings related to FOTA
system updates.

Table I summarizes the key FOTA detection features (flags)
used to detect the mechanisms provided by the Android
platform to install new apps in the system partition (§II). These
features cover both the old update procedures based on the
RecoverySystem as well as the newer A/B system updates.
If an app has at least one of these signals, FOTA Finder will
categorize it as FOTA.
Detecting OTA capabilities. During the manual analysis of
FOTA apps, we identified other signals associated to behaviors
implemented by OTA apps—i.e., apps that can install and
remove user (i.e., non-system) apps under the /data directory.
FOTA Finder also uses these signals, since they allow us to
identify other package installation capabilities in FOTA apps.
We provide a complete list of OTA features along with further
details in Appendix B.

B. Scope and Limitations

We identify three main technical limitations in FOTA Finder
during our design, development, and exploratory research efforts.
First, our tool can only FOTA apps that follow Google’s
recommendations and use FOTA-specific API functions. It
cannot detect FOTA apps that follow custom implementations
(e.g., use of custom services, or native code). Nevertheless,
we also look for the presence of /cache/recovery/command
and --update_package strings, as their usage are part of the
internal implementation of an update for recovery [50].

Second, FOTA Finder fails to parser ODEX code for 37% of
the apps. This happens because of the lack of documentation
of the ODEX file format, and changes on the internal structure
can be wrongly handled by the FOTA Finder parser.

Finally, our detection of FOTA apps relies exclusively on
static analysis of DEX code. This is problematic because FOTA
apps may use dynamic code loading, reflection, native code
or obfuscation of strings. This can cause FOTA Finder to

wrongly classify FOTA apps as non-FOTA. However, we resort
to static analysis only, as running pre-installed apps in a sandbox
environment at scale remains an open problem.

C. FOTA Finder Results

We run FOTA Finder on 422,121 pre-installed apps found in
non-rooted devices from 40,165 users in the Firmware Scanner
dataset (§III). FOTA Finder could not process 37% (154,922)
of the apps. All of these errors are due to the usage of ODEX
files by these apps. In total, FOTA Finder detects 2,013 FOTA
apps in 20,924 devices. 24% of these apps are using ODEX
code, which FOTA Finder managed to parse successfully.

An analysis of the FOTA apps package names shows that
32% (647) of them do not contain any string tokens that may
reveal the purpose of the app (e.g., update, install, fota).
We also find that 93% (1,878) of the FOTA apps rely on
the RecoverySystem API for the update process, while the
remaining 7% (135) support the A/B system updates. 32%
(651) of the FOTA apps can also perform installations at the
user level. We investigate these capabilities in detail in §VII,
as FOTA apps can use them to install malicious apps.

D. FOTA Finder Evaluation

We consider acceptable for FOTA Finder to miss some apps
(False Negatives, FN) due to its technical limitations (§IV-B).
Our methodology offers sufficient coverage of FOTA apps
to analyze the ecosystem and draw general conclusions. We
therefore focus on reducing False Positives (FP), i.e., non-FOTA
apps missclassified as FOTA, since these can introduce bias
and affect the validity of our results. We thus consider FOTA
Finder as a best-effort yet accurate approach that does not aim
to be complete. To this extent, we focus our evaluation on
detecting potential FPs, mainly in two ways. First, we perform
a manual review of a subset of 50 FOTA apps. Second, we
search Google Play Store for the presence of FOTA apps. Due
to the intrinsic characteristics of FOTA apps (e.g., they must
be installed on a read-only system partition) we do not expect
to find these apps on the Play Store market, as Google Play
policies prohibit apps with the ability to install others [41],
[56] (concrete wording in Appendix E).
Manual review: We validate our method by manually in-
vestigating a subset of 50 FOTA apps randomly chosen.
We chose these apps using the features in Table I, and
include RecoverySystem based, A/B system update based
and command based FOTAs. One of the authors manually
classified them as FOTA apps, discovering three apps that
are potential FPs. However, a closer look on those apps
reveals that these are not fully-fledged FOTA apps, but part
of a larger FOTA system composed of multiple apps, each
one of them responsible for different phases (e.g., down-
load, verify and install the packages). Specifically, a FOTA
(com.samsung.sdm) verifies the update package using the
method RecoverySystem.verifyPackage, but relies on a na-
tive library (libmno_dmstack.so) to apply the update. Another
app (com.qualcomm.qti.loadcarrier) applies the verifica-
tion but relies on the service CarrierAccessCacheService
from another package for the actual installation. Finally,
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com.zte.zdm relies on an custom update method (thus, not
implemented in FOTA Finder), which uses an intent with the
action android.intent.action.RECOVERY_REBOOT with the
specific parameters to perform the update. Accordingly, we do
not consider them as actual FPs and we do not remove them
from our dataset.

Samsung is an interesting example of the use of native code:
we find a total of 149 devices with a FOTA app, but also the
libmno_dmstack.so library. Manual analysis of the library
reveals that the update is implemented by writing directly
into /cache/recovery/command. Even though there is no
enforcement on Google’s side, none of its recommendations
use native code for system updates.
FOTA apps in the Play Store: We search all FOTA package
names in Google’s Play Store from Madrid, Spain on the June
24, 2020. We rely on a purpose-built crawler that uses the
package name (indexing field on Google Play) to identify
the presence of an app in the market. We detect 7 FOTA
packages that are available in the store, including Google
Play Services. Although Google Play Services does not
perform any system updates, it still updates Google related
apps that often come pre-installed. We review the descriptions
and certificated of the other six apps and verify that these apps
are indeed FOTA apps, used for system updates of specific
phone models and released by the actual device vendor. We
lack sufficient insights to explain why these apps were accepted
on Google Play despite Google’s Terms of Service [56].

V. ECOSYSTEM

Developing and deploying FOTA apps, as well as operating
the updating infrastructure, are critical parts of the Android
supply chain. While some OEMs might keep these processes
in-house, others rely on third-party FOTA suppliers for some
or all of the steps. The number and relationships between
the stakeholders involved in the firmware update process are
generally unknown, and it is not always possible to determine
their identity due to the lack of accurate attribution signals. In
this section, we leverage FOTA Finder’s results to explore this
ecosystem. First, we identify the different stakeholders present
in the deployment of FOTA apps (§V-A). Second, we analyze
their prevalence across different devices and brands (§V-B).

A. FOTA stakeholders

One critical aspect of the FOTA supply chain is identifying
the company or organization responsible for building and
deploying the FOTA component. A number of technical
challenges prevent us from reliably performing authorship
attribution in the Android ecosystem. This is, to a great degree,
the result of a lack of a public key infrastructure (PKI) to verify
the legitimacy of the certificates used to sign apps. This issue
is particularly critical on pre-installed apps [43] as they lack
the developer metadata that can be found for regular apps on
app stores. Furthermore, confusion is added when brands and
developers use multiple organization unit names within their
products (e.g., Samsung Corporation vs. Samsung Electronics)
or when they use generic names such as Android [61].

Despite these limitations, we analyze FOTA package names
and certificates to identify the companies responsible for the
deployment of FOTA apps and, if possible, their developers.
We assume that the company that signs a FOTA package is the
one behind its deployment. We also check the FOTA package
name and, if it contains a company name that differs from the
signer, we assume that the app is developed by the company that
appears in the package name and deployed by the company that
signs it. We combine the methodology proposed by Sebastian et
al. [61] with the device brand as reported by Firmware Scanner.
To get the organizations from the certificates, we rely on the
Organization field (O) and the domain of the Email from the
subject’s Distinguished Name (DN). From this analysis, we find
269 unique certificates that sign FOTA apps, belonging to 219
subjects from 127 organizations. The spectrum of organizations
in the certificates is wide, ranging from certified OEM vendors
such as Samsung to MNOs such as Vodafone.

To better explore the FOTA providers landscape, we classify
them by their type of company following a semi-manual
snowball sampling method [45]. We performed web searches
to identify unknown companies that remained unclassified.
This process allow us to identify the following categories,
presented by number of package names detected for each
category and the percentage of apps within the 2,013 FOTAs
detected: (i) OEMs: 53% of FOTA apps from 77 different
packages; (ii) SoCs: 9% of FOTAs apps from 13 packages;
(iii) SFDs: e.g., Adups or Redstone: 9% of FOTA apps from 13
packages; (iv) MNOs: 1.6% of FOTA apps from 4 packages.
Additionally, there are 15% FOTAs from 2 Google packages
(com.google.android.gms and com.google.android.gsf).
We could not find information for 12% FOTA apps from
24 packages, which we label as Uncategorized (UNC). This
analysis reveals that the FOTA ecosystem is rich and goes
beyond just OEM vendors.

While one would expect a one-to-one mapping between pack-
age names and signatures, we find that this is not the case in the
FOTA landscape: 49 (37%) packages are signed by 2 or more
different organizations. This is due to different organizations de-
veloping the FOTA and deploying them in the devices. The most
extreme case is a single package, com.adups.fota.sysoper,
signed by 60 different organizations. Adups is a FOTA software
development company whose products are integrated in (mostly
low-end) smartphones [19], [47]. Organizations signing this
package include OEMs such as Konka, Tinno and Wheatek. In
many of these cases, this a mandatory requirement in order
to acquire the system shared UID as we will show in §VI.
Another package, com.mediatek.systemupdate.sysoper, is
signed by 33 different certificates from various organizations,
including OEMs like Oppo, Lenovo and HTC. Mediatek is
a SoC manufacturer, and the presence of one of its FOTAs
might be required to update specific firmware. However, as
we describe in §V-B and §VII, some FOTA apps from SoC
vendors do install apps available on public markets.
Security implications: The lack of control over the FOTA
signing process has attribution implications but also security
ones. We find 40 FOTA apps (2%), corresponding to 13
different packages that are signed with default (thus well-
known) test-keys released as part of the AOSP. At least 171
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Package # dev.

com.adups.fota.sysoper 98
com.mediatek.systemupdate.sysoper 16
pl.zdunex25.updater 13
com.abastra.android.goclever.otaupdate 11
com.mediatek.googleota.sysoper 10
com.redstone.ota.ui 8
com.freeme.ota 6
com.fw.upgrade.sysoper 4
com.fota.wirelessupdate 3
org.pixelexperience.ota 3
com.android.settings 2
com.adups.fota 1
com.rock.gota 1

Brand # dev.

Alps 80
Xiaomi 16
Samsung 12
Goclever 11
Allview 10
Doogee 9
Iku 8
Blackview 6
Bravis 6
Cubot 3
Elite_5 2
BQ 2
Others (9) 11

Table II: FOTA Packages (left) signed by default keys from
AOSP and Top brands (right) affected.

devices from 20 brands present this issue as listed in Table II.
The use of such keys is discouraged in the FOTA development
guidelines defined in the Android official documentation due to
their concerning security implications [30]. Examples of these
risks are the replacement of legitimate app as an update or, in
case of misconfiguration of the sharedUID and components
permissions, another app running in the same process memory
and getting access to FOTA files.

B. Prevalence

We study the prevalence of FOTA apps across devices and
vendors using the device metadata provided by Firmware
Scanner. We observe that the set of 133 packages are distributed
over 395 different brands. While we find most packages (67%)
in devices from the same brand, some devices ship apps from
multiple brands. As expected, com.google.android.gsf is
pervasively present in over 95% of the devices in our dataset.
Similarly, com.google.android.gms is present in devices
from Google-certified OEMs (18%). Additionally, we find high-
prevalent cases such as two FOTAs from Adups and Mediatek,
which appear in 578 and 336 devices from 111 and 34 different
brands, respectively.

It is difficult to discern whether a given FOTA is developed
by the OEM manufacturing the device by just looking at the
information available on the certificate. However, by analyzing
the relationships between the package names, the OEMs,
and the organization signing the FOTA apps, we can gather
more insights about the distribution of some particular FOTA
packages in Android devices. We refer the reader to Figure 3
in Appendix C for a graphical illustration of this distribution.
We observe two different patterns:

1) First-party FOTAs in which there is a consistent relationship
between packages, brands, and certificate information (e.g.,
the com.samsung.android.app.omcagent app found on
a “Samsung” device, signed by“samsung corporation”).
Note that in some cases the brand reflects MNOs due to
the re-branding of devices, e.g., “verizon” devices that are
actually updated by a FOTA app from “samsung”.

2) Third-party FOTA providers like Adups, Redstone and SoC
manufacturers like Qualcomm, which are present in devices
from multiple vendors, and often signed with different
certificates as discussed before.
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Figure 1: Distribution of FOTA types in devices with 1 to 5
FOTAs. To ease visualization, we show non-Google packages
with a higher prevalence in our dataset.

We discover that 42% of FOTA apps (from 47 packages)
are first-party FOTAs, all of them from the OEM category,
while 43% of apps (from 84 packages) are third-party FOTAs.
Specifically, 10% of apps from 30 packages are from OEMs,1

1.6% of apps from 4 packages are from MNOs, 9% of apps
from 13 packages are from SoCs, and 9% of app from 13
packages belong to the SFD category. The rest of the FOTAs
are either not categorized or belong to Google.

Despite the limitations of this analysis, the results show that
a majority of FOTA software from our dataset is not deployed
by the OEMs. Instead, they often rely on third parties, either for
updating the whole system or for updating the software required
by the different hardware components. The externalization
of FOTA services translates into vendors losing control over
critical system components with the ability to silently install
software in the devices. This may introduce privacy concerns,
as it is not generally possible to know who is providing a device
with updates or if external manufacturers can access sensitive
data. This lack of control also has security implications as
users have no control over what is installed using a FOTA.
For example, malicious apps can be installed without user
knowledge [19]. We go further into the analysis of installations
through FOTA software in §VII, using data from real devices.

We observe that 80% of the devices have Google FOTA
components. If we exclude those components, we find 71%,
20%, 8%, 0.8%, and 0.2% of devices with one, two, three,
four and five FOTAs, respectively. A plausible reason for
having more than one FOTA is to update packages for different
purposes—e.g., the system itself, hardware drivers, or other
apps. Figure 1 shows the distribution of FOTAs per device
in our dataset, grouped by their type. We report statistics for
devices having 1 to 5 FOTAs. For clarity reasons and to reduce
combinations, we aggregate repeated types (e.g., we reduce
[SOC, OEM, OEM] and [SOC, SOC, OEM] to [SOC, OEM]). In
general, we observe that in most of the devices with one or
two FOTAs, these are from OEMs (66% and 66% respectively).
In absence of an OEM FOTA, it is common to observe either
a FOTA from a SFD or SoC. Indeed, often combinations of
FOTAs from different categories include one from a SoC. This
suggests that these devices include FOTAs used to update
specific hardware components, and FOTAs used to update the
system itself. A less common type of FOTA found is MNOs.

1Note that some OEMs, like Foxconn, JRD or Tinno, also provide FOTA
services to other brands (possibly due to re-branding).
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Those cases where a FOTA of this type is present might be
due to MNOs willing to take the control over the devices by
installing specific updates and system apps (not allowing the
user to remove them), like app centers or commercial apps.
Limitations. Our analysis is based on 2,013 FOTA apps
extracted from 20,924 devices. Due to limitations on FOTA
Finder (§IV-B), we were not able to process 37% of the
Firmware Scanner dataset. A larger coverage might change
the distribution of FOTA types. Also, we analyzed the FOTA
categories using static lists that were filled by doing manual
web searches, in order to classify the different companies
based on the package names. These limitations may impact
our results. For example, we found devices where only SoC
FOTAs are present (devices like Xiaomi or Smartfren with
FOTAs from Qualcomm or SPRD). One would expect that
each device contains at least the corresponding OEM FOTA
(or a specialized developer). In cases where neither of these
are found, this might be due to: (i) FOTA Finder not being
able to find the FOTA corresponding to the OEM or SFD in
these devices, or (ii) due to limitations in the classification,
e.g., an OEM wrongly labeled as a SoC developer.

VI. BEHAVIOR ANALYSIS

We statically analyze the FOTA apps in our dataset to
characterize their capabilities, privacy risks, and identify means
to execute potentially harmful or unwanted behaviors. We
also perform an analysis of the different aspects relevant
to the installation process and other artefacts present both
in devices (specific certificate repositories) and FOTA apps
(e.g., shared UIDs) that provide additional information about
the stakeholders forming the update ecosystem and their
relationships. We note that our findings only show potential
behaviors as we do not have runtime observations. We might
also be missing some behaviors as a consequence of code
obfuscation techniques or reflection [35], [42], [54]. This is
the result of well-known static analysis limitations.

A. Overview

We begin our study with a general analysis of the DEX
code of the 1,716 non-Google FOTA apps found on non-rooted
devices to identify the presence of potentially harmful behaviors,
including the access to sensitive resources and personal data.
We rely on a custom analysis pipeline that integrates multiple
open-source static analysis tools to elicit behavior in Android
app, such as FlowDroid [31] and Amandroid [67] to conduct
taint analysis, and a modified version of Androwarn [10] to
perform API usage analysis. We are unable to automatically
study dynamically FOTA apps in a standard analysis sandbox
due to technical and instrumentation impediments, including
the need for platform signatures on the code, dependencies on
hardware, and different entry points than those often expected
by the sandbox (see §VIII). Consequently, our results might
miss hidden behaviors that are elicited through techniques such
as reflection and dynamic code loading.

Table III provides a summary of our results. We classify
the access to 36 different types of sensitive data, resources, or
capabilities into 9 categories. The majority of FOTA apps show

Accessed data type / behaviors % Apps (#) % Third-party (#)

Telephony
identifiers

IMEI 33.7 (577) 15.2 (260)
IMSI 31.4 (538) 8.2 (140)
Phone number 8.8 (151) 4.4 (75)
MCC & MNC 19.1 (327) 6.3 (108)
Operator name 5.7 (98) 3.3 (56)
SIM Serial number 6.5 (111) 2.7 (446)
SIM State 13.1 (224) 4.5 (77)
Current country 6.7 (115) 1.3 (22)
SIM country 7.6 (131) 3.2 (55)

Device settings

Software version 1.0 (17) 1.0 (17)
Phone state 25.1 (430) 5.5 (95)
Installed apps 49.2 (843) 17.9 (307)
Phone type 14.4 (247) 8.3 (143)
Logs 65.3 (1,119) 24.8 (425)

Location

GPS 0.7 (12) 0.6 (11)
Cell location 4.3 (73) 2.7 (47)
CID 4.8 (82) 2.6 (44)
LAC 3.7 (63) 2.0 (34)

Network
interfaces

Wi-Fi configuration 2.0 (35) 1.9 (32)
Current network 50.0 (856) 15.1 (259)
Data plan 34.9 (598) 8.9 (153)
Connection state 4.3 (73) 1.7 (29)
Network type 17.3 (296) 6.2 (106)

Phone service
abuse

SMS sending 0.1 (1) 0.0 (0)
Phone calls 8.5 (146) 3.3 (57)

Audio/video
interception

Audio recording 2.6 (44) 2.4 (41)
Video capture 2.3 (40) 2.3 (40)

Arbitrary code
execution

Native code 27.1 (465) 11.4 (196)
Linux commands 30.9 (530) 10.8 (185)

Socket conn. Remote connection 6.7 (114) 1.9 (32)

Table III: Percentage of apps (out of the 1,716 FOTA apps
analyzed) accessing personal data or showing potentially
harmful behaviors. The rightmost column shows how many of
them are third-party FOTAs.

capabilities that are expected to implement their function. For
example, most apps access the current network and phone state.
This is expected since Google’s documentation [3] recommends
that FOTA updates should be scheduled when the device is
in idle maintenance mode (e.g., at overnight, when phone is
charging) in order to avoid disruptions, and also when it is
connected to a Wi-Fi network to avoid monetary costs due to
downloading updates through a data plan. However, our findings
suggest a prevalent access to user and device identifiers. A
small number (<5%) of the analyzed FOTA apps access the
device location. Table IV shows, for a subset of FOTA apps, the
types of device and user data that is accessed and uploaded to
the update servers. The purpose of uploading such identifiers is
unknown, though one plausible hypothesis is that they facilitate
targeted installations programs. The fact that these apps run
silently in the background indicates that personal data is likely
uploaded without user consent, showing a lack of transparency
in these apps. Other potentially dangerous behaviors include
the ability to make phone calls (146 apps) and recording audio
(44 apps) or video (40 apps). However, as we will further
investigate in §VI-C, their usage is legitimate in most cases.

In the remaining of this section we take a deeper look at
some of these potentially dangerous behaviors, with emphasis
on the presence of third-party components in FOTA apps and
the type of permissions that are requested by FOTA apps. When
relevant, we will contextualize our findings with the type of
FOTA apps according to the classification in §V-A.
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com.sonyericsson.updatecenter • • • • • • •

com.motorola.ccc.ota • • • • • • • • • • •

com.redstone.ota.ui • • • • • • • • • • • • • • • • • • • • • •

com.adups.fota • • • • •

Table IV: Data sent to the update server in selected FOTA apps.

B. Third-party components
It is common for Android apps—including pre-installed

ones [43]—to embed third-party SDKs (Software Development
Kits) in order to include functionality from external sources,
such as networking support or advertisement and analytics ser-
vices [51], [57]. In Android, however, any component embedded
in an app runs with the same permissions as the host app. As a
result, since FOTA apps are highly privileged (as we will discuss
in §VI-C), the presence of libraries offered by companies
with data-driven business models would be concerning. These
instances might reveal access to sensitive permissions for
secondary purposes like user-tracking or advertising.

We rely on an enhanced version of LibRadar [51] to identify
all embedded libraries in an app. To maximize the soundness
of our results, we only consider those libraries identified by
LibRadar with a confidence of 100%. We expect FOTA apps
to include SDKs that are non-privacy invasive, such as those
related with development support, network protocols or database
drivers. Therefore, we report only those SDKs that are related
to analytics services and advertisement libraries, i.e., those more
likely to collect personal data for secondary purposes [57].

Table V summarizes our findings. In total, we find 8 SDKs
related to social networks, user tracking, and advertisement
in 171 (10%) FOTA apps. While this number is lower in
comparison to what has been reported for “regular” Android
apps [52], [57], it is still important to study the presence
of SDKs in FOTA apps because of their privileged position.
The most common SDK is Firebase, which presents a lot
of different functionalities (from analytics support to storage
related features). On its own terms of service, Firebase
declares that it collects personal data and that it acts as a data
processor [46] (concrete wording can be found in Appendix D).
Finding privacy policies from pre-installed apps is hard, as
they cannot be found on app markets and they often lack
their own policy, in fact, we could not access them for this
project. Therefore, users will have a hard time to learn that
this type of third-party components are part of FOTA apps.
Interestingly, we find that Google Ads is also featured in FOTA
apps, suggesting that some providers might try to generate
advertisement revenue. We do a manual review of several
versions of the com.motorola.ccc.ota OEM FOTA app in
which Google Ads is embedded. We find that the app includes
functionality from the Google Mobile Services SDK which

SDK # apps Type

Firebase 133 Development, Analytics, Push, Storage
Google Ads 23 Advertisement
Umeng 8 Analytics
SinaWeibo 6 Social Media
Tencent 4 Social Media
Millennial Media 1 Advertisement
New Relic 1 Analytics
Fabric 1 Analytics

Table V: Social networks, analytics and advertisement SDKs

relies on some code from the Google Ads SDK. We also find
SDKs that are more common in the Asian developer ecosystem,
such as Umeng or the social network SinaWeibo. We find that
these are more prevalent in apps found in phones from Lenovo
and Nubia. Manual analysis of the app’s code suggests that the
OEM FOTA app com.lenovo.ota uses features related to the
social network capabilities of SinaWeibo (e.g., parsing an access
token) and that the OEM FOTA app cn.nubia.systemupdate
uses the analytics capabilities of Umeng. Manual analysis
also suggests that the com.coloros.sau OEM app uses the
crash report capabilities of the Tencent SDK. We next analyze
whether these SDKs request access to dangerous permissions
or if they piggyback from those requested by the host app.

C. FOTA Privileges

FOTA apps come pre-installed in the device system partition.
This means that they can enjoy system privileges—i.e., they
cannot be easily uninstalled and they can have access to system
protected data and resources [43]. In order to understand the
privileged access that FOTA apps have, we first analyze how
common it is for apps to have the same user ID (UID). Android
allows apps with the same UID to access each other’s data
and run in the same process, provided that they are signed
with the same certificate. Analyzing shared UIDs is relevant
since it implies that FOTA apps might be part of a larger code
base with access to more functions and permissions, including
privileged ones. Then, we analyze the type of permissions that
are requested by FOTA apps (and their embedded SDKs) as a
proxy to understand the type of data that they might collect.
We extract requested and declared permissions and shared UID
from the app’s manifest.
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Figure 2: Organizations and distribution of other applications
that share the UID and are signed with the same certificate as
FOTAs in the same device

Shared User IDs: We find a shared UID value for 1,737
FOTA apps from 80 different packages, with most of them
(60%) having the android.uid.system value. This implies
that, if such apps are signed with the platform key, they are
effectively “the system” and have access to all code and
permissions than the superset of all system apps. Interest-
ingly, some FOTA apps share UID with apps such as the
android.uid.phone (29 FOTA apps from “qualcomm” and 3
from “BBK”), android.uid.nfc (one FOTA from ‘samsung’)
or android.media (one FOTA app from ‘gigaset’). Though
this feature (shared UID) was recently deprecated in API level
29, it has been widely used by system apps in the past, thus
affecting millions of Android devices that do not run newer
Android versions. Figure 2 shows, per organization, the number
of devices where we observe non-fota apps with the same User
ID as a FOTA app as well as the distribution of these apps across
devices. Technically, if FOTA apps expose their functionality
and data as external services, they would be making them
available to non-FOTA apps.
Permission analysis: In order to understand the type of data
and resources that FOTA apps might access (and possibly
make available to embedded third-party SDKs or to non-FOTA
apps via shared UID), we study the permissions requested by
these apps. To do so, we parse the Android Manifest file
to extract requests for both AOSP permissions (i.e., those
that are officially released by Android) and custom ones (i.e.,
those declared by vendors or developers to enable access
to functionality/data from other apps [43], [62]). For apps
that specify a sharedUserId attribute (70% of the FOTA
apps in our dataset), we also include official permissions
requested by applications that share the same UID also found
on the same device and signed by the same certificate, to
reproduce what happens on real devices. We find that FOTA
apps request a median number of 25 AOSP permissions. It
is expected that FOTA apps request some permissions, as
they enable functionalities that are part of the functionality of
these apps. For instance, we find that access to the Internet,
Internet connection data, external storage of the phone and the
ability to reboot are all requested by over 70% of FOTA apps.

Nevertheless, there are other permissions that can be considered
potentially dangerous for user privacy, and that might not be
part of the expected functionality of a FOTA app.

Dangerous permissions [22] are among the most requested
by FOTA apps. This is worrisome as from Android 8,
manufacturers can “whitelist” privileged apps and list per-
missions that should be granted to them without user in-
teraction [24]. The first column in Table VI shows, for
some examples of dangerous permissions, the percentage of
apps that request them. In particular, 21% of FOTA apps
request access to ACCESS_COARSE_LOCATION and 15% to
ACCESS_FINE_LOCATION. These permissions could give apps
the ability to customize the list of apps to install based on the
location of the users. We also find that 70% of FOTA apps
request the READ_PHONE_STATE permission, which gives access
to the IMEI (a unique identifier that facilitates tracking).

To better understand the intended use (i.e., primary or
secondary usages) that FOTA apps make of each request, we
manually analyze the code that invokes permission-protected
methods. Interestingly, some FOTA apps (i.e., “test/engineer
mode” apps) request a high number of permissions because they
have the ability to test different functionalities from the phone
(e.g., the GPS manager, the camera or call features). Examples
of such apps are com.vivo.bsptest, com.lge.hiddenmenu
and club.dexp.dmfct2, which are all OEM FOTA apps.2

While these behaviors are not privacy invasive, we also find ex-
amples in which access to sensitive data might result in privacy
risks for users. For instance, the com.redstone.ota.ui SFD
app includes a JSON with information such as the location
of the user, its mobile carrier, or the system language when
querying an online server for sync information.

We study whether these permissions are requested for
secondary purposes (e.g., user-tracking or advertising via
third-party SDKs). For the automatic analysis we rely on
Cartographer [33] to analyze whether a given API call is
triggered by the app’s code or by a third-party SDK. Then,
we map these API calls to the permission that enables them
by using custom mappings that complement the mappings
generated by Axplorer [32]. Specifically, we fetch mappings by
parsing Android Studio [29] and the @RequiresPermission
tag present in the AOSP code [26], [27]. Our analysis shows
that, even though we find evidence of third-party SDKs related
to advertisement and tracking in FOTA apps, these rarely
access any dangerous permissions. Table VI shows for each
dangerous permission found in FOTA apps, how often it is
used in the app’s code only, on code from a third-party SDK
only, or in both. We also show between brackets how many
of these SDKs are related to tracking services (i.e., social
networks, analytics and advertisement SDKs). We find that
most dangerous permissions are only accessed by the app
itself and that most third-party SDKs that access a dangerous
permission are not related to advertisement or analytics services
(i.e., they are development support libraries such as Volley [28]
or Leak Canary [49], which in principle are not dangerous
for the privacy of users). We still find examples of analytics

2In order to test the call feature, this app calls an emergency number, using
critical resources for non-critical situations.
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Permission % apps App App & SDK
(Tracking)

SDK
(Tracking)

READ_PHONE_STATE 70% 90% 9% (2%) 1% (0%)
ACCESS_COARSE_LOCATION 21% 78% 10% (0%) 12% (0%)
SEND_SMS 16% 88% 0% (0%) 12% (0%)
ACCESS_FINE_LOCATION 15% 76% 5% (0%) 18% (0%)
GET_ACCOUNTS 10% 78% 17% (0%) 5% (0%)
READ_SMS 7% 99% 1% (0%) 0% (0%)
READ_PHONE_NUMBERS 1% 99% 1% (0%) 0% (0%)

Table VI: Percentage of apps requesting a given permission,
and how often only the FOTA app, a third-party SDK, or both
use it in the code.

SDKs leveraging these permissions, such as the “New Relic”
SDK accessing the location in the com.bqreaders.ota OEM
app or “Tencent” and “Firebase” using the permission to
access unique identifiers in both the com.coloros.sau and
com.samsung.android.app.omcagent OEM apps.

Finally, we take a look at the custom permissions requested
by FOTA apps. This type of permissions are declared by third-
party actors (such as other app developers or OEMs) to protect
the access to some exposed functionality [43], [62]. We find a
total of 401 unique custom permissions by their name. We find
that FOTA apps request a median of 6 custom permissions.
We find examples of permissions declared by phone vendors
(e.g., com.lenovo.permission.READ_SEARCH_INDEXABLES),
and others related to different Google services (such as
com.google.android.googleapps.permission.GOOGLE_AUTH).
This indicates that FOTA apps rely on functionality outside
the AOSP permission model, provided by external sources.

D. Potential for Abuse in the Update Process

We next analyze whether the FOTA apps in our dataset
follow Google’s recommendations [20] for the verification
and installation of the updates (steps 3 and 4 of the FOTA
update lifecycle process introduced in §II). We also analyze the
organizations that are involved in these processes by looking at
the relevant verification certificates. Due to our limitations to
conduct dynamic analysis, we do not analyze other steps of the
update process, e.g., data exchanges with the update servers.

Most FOTAs in our dataset (93%) use Google’s
RecoverySystem library to implement system updates.
These include those running on a device pre-Android 7.0
(where there are no other alternatives) and devices with newer
versions that do not support A/B updates (see §IV). While this
library is available and easy to use for package verification
and installation, developers may decide to implement their
own custom update mechanism. During the validation of
FOTA Finder (§IV-D), we found cases where the FOTA app
was using the verification component, but not the actual
installation API which was done by other means. In this
section, we leverage the signals from FOTA Finder to analyze
the capabilities of all non-A/B FOTAs in terms of whether they
do install, verification, or both. Specifically, Table VII shows
the prevalence of apps that have installation capabilities (either
using Google’s recommendation, i.e., the installPackage
API method, or writing in /cache/recovery/command), and
verification capabilities (using the verifyPackage() API).

We observe that 8% of all the non-A/B FOTA apps do use the
verification, but we have not found evidence of how they install
packages. Such apps might rely on other apps to perform the
installation (e.g., through an Intent) or on other component
(e.g., native code or via reflection). Also, 45% do have
installation flags but do not use the verifyPackage method
from the RecoverySystem library. This could mean either
that no verification is applied, or that a custom verification is
implemented. In an attempt to discover if a custom verification
method is being applied, we looked for the API MessageDigest
in specific packages where the update process occurs in the
FOTA apps. Our analysis retrieves all the calls to this API
and the hash algorithm used. We observe that, for the 949 that
do not verify the updates using Google’s API, 51% contain a
call to MessageDigest, mostly using the MD5 hash algorithm,
suggesting that they perform their own verification process.

Either if the verification is not done by any means at the
high-level Android code, we observe that the recovery binary
always applies the verification step as a security measure before
applying the update [7]. This verification relies on the default
otacerts.zip file [8], and thus owners of the certificates
included in this file are authorized to install packages in the
system. We rely on the Firmware Scanner dataset to inspect this
certificate list, obtaining 3,311 otacerts.zip files from 1,747
devices. From these, 598 (6%) also contain a FOTA app.3 In
general, we find that the same organization that signs the FOTA
app is present in the otacerts.zip file from the same device.
In these cases, the same organization signing the FOTA is also
responsible for the updates. While the majority of apps are
related to a single certificate in the file, 8 FOTA developers use
two different otacerts.zip files. Our manual analysis shows
that most of these are from the same organization. Yet, there
are 12 FOTA developers for which we do not find a single
corresponding certificate in the otacerts.zip (i.e., they are
not responsible for the update process). In some cases, these
FOTAs are related to third-party FOTA providers like Adups,
which are developers but do not manage the update process.
Finally, it is noteworthy the presence of 5% devices that include
an AOSP default key in the otacerts.zip file, affecting 17
brands. These devices are mostly from the brand Alps (57%)
and Goclever (12%), but we find devices affected from brands
such as Huawei (3%), Toshiba (3%) or Samsung (1%). The
use of AOSP test keys renders the verification useless, and it
might allow non-authorized parties to install system apps.

VII. TELEMETRY ANALYSIS

In this section we complement the analysis of FOTA
packages from previous sections with dynamic behaviors
observed on real devices. Since sandbox dynamic execution
of pre-installed apps remains an open problem, we rely on
empirical evidence obtained from the telemetry of a commercial
security tool that tracks the installation of Android apps (see §III
for details). This section first describes how we detect FOTA

3The low ratio of certificates is due to: (i) the lack of support in FirmwareS-
canner to identify and extract the file, since their developers instrumented this
feature on November’19; and (ii) limitations of FOTA Finder (§IV) to extract
FOTA apps for some devices.
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INSTALL VERIFY #APKS %APKS
API CMD

X × X 495 26.36
X × × 459 24.44
× X × 454 24.17
× X X 249 13.26
× × X 170 9.05
X X × 36 1.92
X X X 15 0.80

Table VII: Analysis of FOTA apps using Recovery system

apps in the telemetry (§VII-A), and then it presents an analysis
of the FOTA apps installation behavior (§VII-B).

A. Detecting FOTA apps in telemetry data

We query the reputation logs dataset (§III) with the FOTA
packages discovered by FOTA Finder. We collect all records
where the APK’s parent package name matches the package
name of one of the FOTA packages. Searching for FOTA
telemetry events using only the FOTA package name can be
problematic. Malicious apps can impersonate FOTA apps by
using the same package name, misleading us into assigning
their malicious installations to benign FOTA packages. We
address this issue by checking the certificate information of
FOTA apps when this is available. To increase our confidence
on our matching, we also search the telemetry for other package
names signed by these certificates and confirm that these are
used for signing other system apps from the same entity.

The resulting dataset contains 15,961,424 installation events
originating from 20 FOTA packages on 841,344 devices from
199 different country codes [18]. Although we are able to detect
the presence of 101 (63%) FOTA packages in the telemetry,
only 20 (12%) show some installation activity. The reason
for the low coverage is the fact that the telemetry uses the
PackageInstaller for obtaining the installer information, and
FOTA apps may install apps via other means (e.g., as an update
of the system partition, or through the execution of external
programs). Thus, our analysis includes only a subset of all
FOTA installations and our measurements should be considered
as lower-bound estimations.

B. Telemetry analysis

We next analyze the installation behavior of the 20 FOTA
packages that we detect in the telemetry. We are particularly
interested in checking if FOTA packages, in addition to system
updates, are responsible for non-system app installations. These
installations can provide evidence of FOTAs being used for
secondary purposes like promoting third-party apps [48]. These
promotions can be part of commercial agreements between
OEMs and third-party developers (e.g., similar to the one
between Facebook and Samsung for pre-installing Facebook
on Samsung devices [12]). These installations may happen
without user’s consent and users may not be able to permanently
remove these apps if installed under system partitions. We
also investigate if FOTA apps contribute in the distribution of
potentially unwanted programs (PUP) and malware.

To assist our analysis, we leverage part of the pipeline in
[48]. More specifically, we complement the telemetry dataset
with two additional sources. First, we query all installed apps
to VirusTotal [65]. We consider as malicious any app that
is flagged by at least 4 Anti-Virus (AV) engines, a threshold
aligned with prior work [69]. Moreover, when AV labels are
available, we feed them to AVClass, a malware labeling tool
that outputs their malware families [60]. Second, we check
the presence of installed apps on the Google Play Store by
searching for their package names.

Table VIII summarizes the behavior of the top 10 FOTA
installer packages by number of installation events. For each
FOTA installer package, the left part of the table shows
the package name and the type of the entity that operates
it. The middle part summarizes the installations: number
of installation events, devices, and countries. The right part
summarizes the installed apps: number of apps, malicious apps,
packages, packages found in Google Play Store, and signers.
From the 20 FOTA packages detected, 13 are from OEMs, 3
from SoCs and 2 from SFDs. We also observe one Google
package (com.google.android.gms) and one AOSP package
(com.android.settings) that provide general services for
OEMs. Installations from these two packages have nothing
to do with Google, but they rather capture the installation
behavior of multiple vendors. We also observe that 3
installer packages, com.sonyericsson.updatecenter,
com.samsung.android.app.omcagent, and
com.coloros.sau, are responsible for the vast majority of the
installation events followed by a long-tail of FOTA packages.

Play Store installations: We look for FOTA packages that
may perform installations that are not related with the update
process. We use the presence of installed packages in the
Google Play marketplace as a signal for this behavior. In
total, 13 out of 20 FOTA installers install 764 packages
that exist in Google Play Store. These 764 packages belong
to 50 Google Play categories; the most common ones are
Tools (20% of the packages), Entertainment (9%), Communi-
cation (9%), Games (8%), and Shopping (7%). For example,
we observe com.qualcomm.qti.carrierconfigure, an SoC
FOTA app installing com.dictionary.paid, an English dic-
tionary app. In addition to Play Store categories, we leverage
the classification from §V-A to detect apps that belong to
OEM and MNO companies. We further analyze the installed
packages of four FOTA packages, com.google.android.gms,
com.andoid.settings, com.sonyericsson.updatecenter
and com.samsung.android.app.omcagent. We select these
four because of their intense installation activity in terms
of different packages installed, including packages listed on
Play Store market. Three out of four of these FOTA pack-
ages install packages from all three categories but predomi-
nantly packages belonging to OEMs and MNOs. For exam-
ple, com.sonyericsson.updatecenter installs 260 packages,
48% of which belong to Sony Electronics Corporation, 25%
to 11 MNOs (e.g., NTT DOCOMO, KDDI, Vodafone), 5%
to the Gameloft video game publisher, and the remaining
22% to various software publishers including large retailers
(e.g., Amazon and Rakuten), social media (e.g., Facebook and
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FOTA Installer Installations Children
Package name Type Events Devices CC APKs Mal. APKs (%) Pkgs PlayStore (%) Sig.

com.sonyericsson.updatecenter OEM 12.6M 381K 156 1.4K 1 (0.1%) 260 149 (57%) 148
com.samsung.android.app.omcagent OEM 3.0M 332K 181 1.9K 29 (1.5%) 489 330 (67%) 334
com.coloros.sau OEM 191K 65K 68 985 28 (3%) 77 1 (1.3%) 35
com.google.android.gms Google 147K 60K 145 244 4 (1.6%) 29 29 (100%) 28
com.android.settings Unknown 35K 4.7K 30 1.4K 494 (35%) 851 233 (27%) 582
com.meizu.flyme.update OEM 6K 773 37 521 1 (0.2%) 61 1 (1.6%) 9
com.qiku.android.ota OEM 310 77 1 12 11 (92%) 12 1 (8%) 12
com.htc.updater OEM 302 120 15 6 0 6 3 (50%) 3
com.archos.arum OEM 156 85 4 4 0 1 0 4
com.qualcomm.qti.carrierconfigure SOC 119 15 3 7 0 7 4 (57%) 4

Table VIII: Top 10 FOTA installers by number of installation events in the telemetry.

Instagram), and streaming services (e.g., Netflix). Similarly,
com.samsung.android.app.omcagent installs 489 packages,
42% of which belong to 32 MNOs (e.g., Vodafone, T-Mobile,
Movistar), 13% to Samsung, 6% to video game publishers (i.e.,
Gameloft and Herocraft), 2% to Amazon, and the remaining
37% to various software publishers including social media (e.g.,
Facebook), and streaming services (e.g., Chilli, Spectrum).

On the other hand, the package com.google.android.gms
installs only mobile device management apps, i.e., apps that
enable the administration of corporate devices. It is difficult
to know the exact reasons behind these installations, but one
explanation can be that vendors use system updates to ship
apps included in newer commercial agreements with third-
party developers. It is also possible that these apps are shared
components of the vendors’ app ecosystem used for performing
installation initiated by other apps, e.g., vendors’ app stores.

Malicious installations: Since FOTA packages appear to
install a variety of non-system packages, we are interested in
checking if any of those are malware or potentially unwanted
programs (PUP). Prior work shows that privileged installers
(i.e., installers signed with the platform key) can be an important
distribution vector of unwanted apps [48]. We observe 7 out
of the 20 FOTA packages installing at least one unwanted app.
Five of those packages have a low ratio of unwanted apps
installations, varying from 0.1% to 2.8%. We use AVClass
to analyze the unwanted apps installed from these 7 FOTA
packages, finding that these are identified as adware, smsreg,
or hiddad. These are PUPs and their behavior may vary
from showing intrusive ads to collecting personal identifiable
information [55]. However, the remaining two FOTA packages,
com.android.settings and com.qiku.android.ota, have
an alarmingly high ratio of unwanted apps installed reaching
35% and 92% respectively. The former installs the largest
number of malicious apps and, although most of these are
PUPs, we observe at least four different malware families,
including instances of the triada trojan [37] and the necro
trojan dropper, a trojan found embedded in popular apps
available in Google Play [44]. One likely reason behind the
high number of unwanted apps for this package is the fact
that it captures the installation behavior of multiple vendors;
we identify at least two: Prestigio and EastAeon. Finally, we
observe that com.qiku.android.ota surprisingly installs only
malware which belongs to different malware families including
trojans like triada, necro, and guerilla (a trojan that sends

SMS messages without the user’s knowledge). These malware
installations take place possibly due to compromised third-
party vendor code included in the OEM images, like in the
case of the triada trojan that was found in the devices of
several OEMs [23]. Unwanted apps installed under the system
partitions cannot be removed neither by users nor by security
tools, and they require an OEM update.

VIII. DISCUSSION

The stakeholders involved in the operation of FOTA apps
have quite some control over user devices during their entire
life span. Due to their privileged position, they also have a
responsibility to not introduce unnecessary privacy or security
harm. We next provide a discussion on the implications of
the findings reported in this paper along various dimensions:
security, privacy, and transparency. We are confident that
our analysis and findings help clarifying the current FOTA
ecosystem and the update supply chain, and can inform the
design of future processes in this space, regardless of the
adoption of projects Treble and Mainline by vendors.
Security and privacy implications. Google provides recom-
mendations on how to implement FOTA updates [3], [20], but
these are superficial and vague on best security practices. In
fact, developers might opt not to follow them at all as in the
case of some Samsung devices. We have shown that this can
result in potentially privacy-intrusive behaviors or the presence
of third-party SDKs that can leverage the set of permissions
of FOTA apps or the dissemination of personal data to online
servers. Furthermore, we have observed that 2% of the FOTAs
in our dataset are signed by the default AOSP test keys, as
well as 90 devices contains a otacerts.zip file with these
default AOSP test keys, allowing in the former any app signed
by the same key to run in the same process of the FOTA app
(i.e., sharing permissions and capabilities), and in the latter to
install any update signed with one of these test keys. Any of
these issues can be considered a severe vulnerability which
might allow a malicious actor to gain full control of the device.
The fact that these vulnerabilities have remained undetected
suggests that FOTA apps are subject to little oversight.
Separation of purposes and capabilities. We find that many
FOTA apps also include install capabilities for regular, non-
system apps. This confirms that a key part of the supply chain,
the FOTA process, leverages their full control of users’ devices
for secondary purposes (e.g., for commercial partnerships as
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in PPI-like schemes [41], [48]). Because of the privileges they
hold, this can happen without user consent. Even if there are
legitimate use cases for installing non-system apps through the
FOTA app, this opens the door to the installation of unwanted
or potentially harmful apps. Our telemetry analysis provides
evidence of a small but significant percentage of unwanted app
installations originating from FOTA apps. These are mostly
PUPs (e.g., adware), but we also identify FOTA apps installing
malware and regular market apps which cannot be removed by
users and require an OEM system update. As a security good
practice, system and non-system updates should be separated
and managed by different processes with different privileges
and installation mechanisms.
Transparency. In our analysis, we show that FOTA capabilities
can be spread over multiple APK files and even be implemented
by multiple stakeholders for different tasks (e.g., to update
SoC firmware or MNOs’ specific apps). In some cases, OEMs
are directly responsible for the updates, while in others they
opt to externalize the development of the FOTA app and the
management of the updates to an external company, e.g., SFD
such as Redstone or Adups. This adds complexity to the supply
chain and increases risk, since it requires understanding and
controlling a wider spectrum of stakeholders. The more actors
in the supply chain, the harder it becomes for users to know
who has the ability to update and install apps in their system.
This also increases the chances that one of the actors along the
supply chain is malicious or implements its own commercial
agreements, which might include Pay-Per-Install programs.
Furthermore, it is very rare for a FOTA apps to be publicly
available or documented, and their privacy policies are hard or
impossible to find. This limits the ability of external parties to
asses their security and privacy implications. In this regard, our
analysis reveals that a substantial amount of FOTA apps use
native code and Linux-level commands. Even if there might be
valid uses for that, the behaviors located there remain unknown.
We leave a thorough analysis of this for future work.
Limitations. While analizing FOTA apps dynamically would
provide us with actual evidence of their behavior, there are
limitations inherent to pre-installed apps that prevent us from
doing this. First, we cannot run apps with a sharedUserId
equals to android.uid.system (60% of 1,737 FOTAs) in
existing sandboxing environments, since these apps must be
signed with the same platform key as the device. FOTA apps
also have device-specific dependencies that prevent us from
running them in any other device. Finally, running the app
might require interacting with a production FOTA’s server,
which we choose to avoid. The telemetry analysis helps us to
overcome this limitation, providing us with data obtained from
real user devices where FOTA apps are originally installed.

IX. RELATED WORK

To the best of our knowledge, this work is the first large
scale study to analyze the ecosystem of Android FOTA apps,
including its stakeholders, behaviors, and security and privacy
risks. Recent studies have investigated similar concerns related
to Android pre-installed apps and its supply chain. Our work
complements these previous efforts by exploring another

integral part of the supply chain: the software update process.
The study conducted by Gamba et al. [43] provided a first and
general overview of such issues, showing how the openness of
Android’s supply chain, together with the lack of transparency,
opens the door for security and privacy issues derived from
pre-installed software We complement this study showing that
pre-installed FOTA apps allows for a dynamic supply chain,
i.e., it does not finish once the device is purchased. Elsabag
et al. presented a static analysis tool to automatically discover
unwanted functionality on Android pre-installed firmware [39].
They applied this method to a dataset of Android firmware
images from different vendors and reported 850 vulnerabilities,
many of them being zero-day.

Keeping systems updated is a difficult problem and several
studies have explored why [58], [63], [64], [66]. Farhang et al.
performed a study of the ecosystem of Android vulnerability
patches [40]. They found that there are different delays between
the time when a provider offers a patch and when Android
provides the same patch for its OS, the number of patch releases
that appears before or in the same month as the public disclosure
of the vulnerability (94%), and the maximum time between the
first line of code related to a vulnerability and the publication
time of a security bulletin (1350 days) [40]. Rula et al. showed
that up to 25% of web requests were coming from software
that was outdated by more than 100 days. Previous work has
also looked at the presence of vulnerabilities and malware on
custom Android firmwares [34], [68], showing that pre-installed
apps found in Android custom ROMs were leaking user data.

X. CONCLUSIONS

In this paper, we conducted the first analysis of the Android
FOTA ecosystem using a dataset of 2,013 FOTA apps collected
in the wild. Our results depict a complex and fragmented
ecosystem, with FOTA apps being developed by different first-
and third-party actors. This suggests a dynamic supply chain
where privileged apps are installed and updated by FOTA
apps, together with other pre-installed apps, in the system
partition. We demonstrated how this fragmentation can lead to
potential privacy-intrusive practices, as well as insecure and
potentially harmful behaviors (e.g., FOTA apps signed with
well-known certificates). Finally, we showed that FOTA apps
can install other non-system apps in user devices, including
abusive malware and PUPs. We hope that our results can
contribute to inform better designs in this space and increase
the security and privacy of the overall Android ecosystem. We
have publicly released our tools [11], [14] and the aggregated
dataset [5] to foster future research on this topic.
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APPENDIX A
PROJECT MAINLINE DEVICES

As of December 2020, the list of devices in the Project
Mainline beta program includes the Google’s devices Pixel,
Pixel2 and Pixel3/3a and 15 devices from other OEMs: Huawei
Mate 20 Pro, LG G8, Sony Xperia XZ3, OPPO Reno, Vivo
X27, Vivo NEX S, Vivo NEX A, OnePlus 6T, Xiaomi Mi Mix 3
5G, Xiaomi Mi 9, Realme 3 Pro, Asus Zenfone 5z, Nokia 8.1,
Tecno Spark 3 Pro and Essential PH-1.

APPENDIX B
SIGNALS USED IN FOTA FINDER

Table IX describes the set of signals used in FOTA Finder
to identify apps with FOTA or OTA capabilities.

APPENDIX C
FOTA ECOSYSTEM RELATIONSHIPS

Figure 3 showcases the complex supply chain and relation-
ships that exist in Android’s FOTA ecosystem across vendors.
We only depict those package names, vendors, and certificates
that do not have a 1-to-1 mapping to other elements. The
figure illustrate the presence of the same FOTA package across
different vendors and brands. This is particularly clear for SFDs
such as Adups and Redstone. The mappings also illustrate the
use of different certificates and how it adds complexity to the
attribution problem.

APPENDIX D
FIREBASE TERMS OF SERVICE

Taken from Firebase’s terms of services in November 2020:

Firebase support for GDPR and CCPA
On May 25th, 2018, the EU General Data

Protection Regulation (GDPR) replaced the 1995
EU Data Protection Directive. On January 1, 2020,
the California Consumer Privacy Act (CCPA) took
effect. Google is committed to helping our customers
succeed under these privacy regulations, whether
they are large software companies or independent
developers.

The GDPR imposes obligations on data con-
trollers and data processors, and the CCPA im-
poses obligations on businesses and their service
providers. Firebase customers typically act as the
"data controller" (GDPR) or "business" (CCPA) for
any personal data or information about their end-
users they provide to Google in connection with their
use of Firebase, and Google generally operates as
a "data processor" (GDPR) or "service provider"
(CCPA).

This means that data is under the customer’s
control. Customers are responsible for obligations
like fulfilling an individual’s rights with respect to
their personal data or information.
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Signal Strength F/OTA Silent install Description Purpose

RV Strong FOTA N/A Call to the method verifyPackage from the API
class android.os.RecoverySystem

Signature checking of the downloaded packages to
be installed

RI Strong FOTA No Call to the method installPackage from the API
class android.os.RecoverySystem

Install downloaded packaged by rebooting in recovery
mode

CMD Strong FOTA No Use of the strings "/cache/recovery/command" and
"–update-package" in the code

Alternative to the android.os.RecoverySystem API to
install system packages. This is always followed by
a reboot in recovery mode

A/B Strong FOTA No Call to the method applyPayload from the API class
android.os.UpdateEngine

Install downloaded packages through the A/B method

OC Weak FOTA N/A Use of the string “otacerts.zip” in the code The “otacerts.zip” file is the default container for the
certificates used to verify the packages to be installed.

OU Weak FOTA N/A Use of the string “ota_update.zip” This is the default, suggested name given to the
downloaded file containing all the packages to be
installed

PM_I Strong OTA Yes Call to the method installPackage from the API
class android.content.pm.PackageManager

Method used to install non-system packages

PM_D Strong OTA Yes Call to the method deletePackage from the API
class anroid.content.pm.PackageManager

Method used to delete non-system packages

PMI Strong OTA Yes Use of the string "pm install" in the code Alternative method to install non-system packages
using the command line.

VND Strong OTA No Use of the MIME type
application/vnd.android.package-archive in
an intent

Method used in installation intents directed to the
PackageManager when requesting it to install a
package.

GRANT Weak OTA Yes Call to the method grantRuntimePermission
from the API class
android.content.pm.PackageManager

Method used to grant install permissions at runtime
without requiring user approval

REVOKE Weak OTA Yes Call to the method revokeRuntimePermission from
API class android.content.pm.PackageManager

Used to revoke install permissions to other packages
in runtime without requiring user approval

PermI Strong OTA N/A Request of the AOSP permission
android.permission.INSTALL_PACKAGES

Permission needed to install non-system packages

PermD Strong OTA N/A Request of the AOSP permission
android.permission.DELETE_PACKAGES

Permission needed to remove non-system packages

NAME Weak F/OTA N/A Use of the strings “ota”, “update”, “upgrade” or
“install” as part of the package or the APK name)

Common practice observed in many F/OTA apps

Table IX: Features used to automatically discover F/OTA apps.

APPENDIX E
ANDROID DEVELOPER POLICY

The Developer Program Policy explicitly says: “We don’t
allow apps that let users install other apps to their devices.”. In

addition, the policy section regarding device and network abuse
lists this as an example of abusive behavior “apps that install
other apps on a device without the user’s prior consent”.
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Figure 3: Relationship among FOTA package names, vendor
and the subject organization from the app certificate.


