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ABSTRACT

A web visit typically consists of the browser rendering a dynami-
cally generated response that is specifically tailored to the user. This
generation of responses based on the currently authenticated user,
whose authentication credentials are automatically included via
cookies in all (including cross-site) requests, have led to a multitude
of issues. Through cross-site leaks (XS-Leaks), an adversary can
try to circumvent the same-origin policy and extract information
about responses, which in turn can reveal potentially sensitive in-
formation about the user. As research on this class of vulnerabilities
only recently gained traction, and the attacks affect many different
components of the web platform, the intrinsic characteristics and
underlying causes remain largely unexplored.

In this paper we present an abstraction of XS-Leaks attacks
and introduce an extended formal model that we use to reason
about the cause of different leaks and which strategies the various
defense mechanisms employ to defend against them. Furthermore,
we provide a classification method for current attacks, and, guided
by our model, propose a methodology to comprehensively detect
new XS-Leak issues, or indicate their absence. Furthermore, we
analyze the current defenses and identify gaps that still require
further research to provide extensive solutions for sites that rely on
cross-site interactions. Finally, we explore how XS-Leak defenses
are currently deployed and which challenges website owners are
still facing. As a first step towards facilitating the deployment of XS-
Leak defenses, we introduce LEAKBUSTER, a dynamic web interface
that provides web developers with suggestions based on the insights
provided throughout this paper.
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1 INTRODUCTION

For many, the web plays an important part of their daily life, ranging
from sharing personal information with friends on social networks,
or looking up health-related details. It is well known that people
share a lot of sensitive information with trusted websites, and that
if this data would be disclosed by adversarial parties, this could
have significant consequences. Depending on the attack, there are a
myriad of ways that the information could be abused. For instance,
information leaked from social networks could be leveraged to
identify a user [41, 44], determine what their interests are [21], or
infer who they were messaging with [22]. Through similar attacks,
the search functionality of web applications has been shown to leak
information about undisclosed vulnerabilities [10, 45] or credit card
details [9].

This class of vulnerabilities is typically referred to as cross-site
leaks, or XS-Leaks, and has received a lot of interest by the security
community in recent years. The XS-Leak techniques exploit a large
variety of browser mechanisms to leak sensitive information about
opaque cross-site responses that are based on the state that the
unwitting visitor has with the targeted website. In essence, every
mechanism that deals with handling responses may be susceptible
to being abused to leak information about these responses. As the
causes of XS-Leaks are very diverse, a wide variety of defenses
are needed to thwart them. This makes it very difficult for web
developers to protect their users.

In this paper we aim to improve the understanding of XS-Leaks
by studying the root cause of the leaks based on their intrinsic
features, and highlight opportunities for future research to capture
the entire threat surface that XS-Leaks pose and determine which
protections are needed to practically defend against them. To this
end, we introduce an extended model of XS-Leaks and show how
the state that a victim has with a web application can be transfered
to the state of a component that is involved in handling the request
and associated response. By later retrieving this state from the
component in a the second stage of an XS-Leak attack, the adversary
will be able to infer private information that the victim shared with
the targeted website. For example, when rendering a page of the
targeted website, a specific resource may only be added to the cache
when the victim is in application state sg, and not in state s; (the
state is based on a secret property unknown to the adversary - this
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could be logged-in or logged out, being connected with someone
one a social network site, receiving at least one result for a search
query, ...). The attacker can then reveal whether the user is in state
so or s; by detecting whether or not the resource was cached by
using a timing attack to extract this “detectable state-difference”
from the HTTP cache.

Based on this formal model, we introduce a classification struc-
ture that can be used to uniquely identify different issues based on
their intrinsic characteristics, i.e. the affected component, inclusion
method and leak technique. We discuss how our new insights in the
underlying causes of XS-Leaks can be used to identify new vulner-
abilities and propose a methodology to this effect. Furthermore, we
explore and analyze the different defenses that can be used to thwart
a variety of XS-Leaks and find that these can be divided in three
main strategies: preventing state-changes in components, isolation,
and ensuring that responses are stateless. By categorizing these,
we aim to improve the general understanding of these defenses
and spark discussion about potentially novel protections, as some
defenses may be too coarse-grained to be adopted. Finally, we ana-
lyze the adoption rate of XS-Leak defenses, introduce LEAKBUSTER!,
a dynamic web interface that facilitates defense deployment, and
report on a case-study where defenses were deployed at large scale.

In summary, we make the following contributions:

e We introduce a formal model for XS-Leaks, highlighting
the underlying intricacies that cause the vulnerabilities, and
capturing the different stages that occur during an attack.

e Based on this model, we propose a classification method that
can be used to uniquely characterize XS-Leaks, and introduce
a methodology that can be used to detect new vulnerabilities.

e As part of our analysis of the little-explored web server
component, we identify two novel XS-Leak attacks.

e We analyze the general strategies that are employed by de-
fenses and find that a combination of isolation and mecha-
nisms that prevent illicit requests are necessary.

e We share the insights of a real-world case study where de-
fenses were deployed at large scale, and use these to create
LEAKBUSTER, a dynamic web interface that can be used by
web developers to facilitate the deployment of defenses.

2 BACKGROUND: SAME-ORIGIN POLICY

When the web was originally envisioned, its main goal was to facil-
itate the sharing of public static information. It was not until later,
after cookies were introduced to the web platform, and users could
authenticate with websites, and share private information with
them, that security became more important. However, as cookies
were not designed with security in mind, and thus are attached
to all requests of the domain they were set on, this gave rise to
a new class of vulnerabilities. For example, in a CSRF attack, the
attacker tricks their victim to send an authenticated request that
performs an unconsented action on the target website, e.g. change
the victim’s password.

The automatic inclusion of cookies in requests did not only en-
able state-changing attacks, but is also at the base of attacks that
aim to uncover information that a user shared with a particular
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website. As this clearly has significant security and privacy con-
sequences, the same-origin policy was devised [27], This policy
is a set of security principles that ensure that one origin cannot
leak any information about resources from another origin, unless
permission is explicitly granted via CORS headers. As a result, the
concept of an origin (scheme, host, port) and site (scheme, eTLD+1)
now is a security boundary, and information should be confined
within this boundary. This includes the content of the response
body, the header values as well as metadata, e.g. size of the response.
Due to historical and practical reasons, some metadata is intended
to be known, such as the dimensions of an image. However, it has
been shown that other, potentially sensitive, information can be
leaked across site boundaries through various side-channel attacks.
These are referred to as XS-Leaks and are the main focus of this

paper.

3 A DETAILED MODEL FOR XS-LEAKS

In this section we provide the description for our model on XS-
Leaks, which will be referred to throughout the remainder of the
paper. This model was created by thoroughly analzying the underly-
ing commonalities of the previously-known XS-Leak vulnerabilities,
which were obtained by a systematic literature review. Our model
extends that of Knittel et al. [15] and focuses on the intricacies
that form the foundation of XS-Leak vulnerabilities. These novel
constructs allow us to comprehensively classify current attacks,
propose a methodology to detect new attacks, and formally evaluate
different defense strategies.

3.1 Running example

To better understand the practical aspects of XS-Leak attacks and
to map these to our formal model, we first introduce a running
example of a web application that is vulnerable to various XS-
Leak attacks. This application provides a fairly straightforward
search functionality, and the web page showing the search results
is implemented as a Jinja template, as shown in Listing 1. The
underlying application authenticates the user based on the cookies
that are attached to the request, and performs a textual search on
the user’s private information based on a string provided in a GET
parameter. For each result, the description is shown along with an
icon that is loaded from a CDN. We assume that the application
is secured against “typical” web security vulnerabilities, such as
SQL injection and cross-site scripting. Interestingly, despite this
fairly trivial functionality, there are multiple XS-Leak techniques
that can be used to leak the user’s private information. In fact, this
example is based on real-world vulnerabilities that were discovered
in a series of Google products [43].

Listing 2 shows the JavaScript code that an adversary could run
on their site to determine whether any results were shown for a
specific (attacker-supplied) keyword. The attack code first loads the
resource in an iframe (although it could also open it in a separate
window using window.open() or window.opener). It then waits
for the document to load, and subsequently uses a timing attack to
determine whether the icon was loaded from cache. As the icon is
added to the cache only when there is at least one result, the cache
entry would be indicative that at least one result was returned for
the query. In order to check multiple queries, the attacker would
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T T SR S

1 const icon_url =
» iframe.src =

<!DOCTYPE html>

<html lang="en">

<body >

<h2>Search results </h2>
<div class="results">

{% for result in results %}
<img src="//cdn.com/result—icon.png">
{{ result.description }}
{% endfor %}

</div>

</body>

</html>

Listing 1: Example template of a search application.

"https://cdn.com/result—icon.png'
"https://service.com/?q=password '

s iframe.onload = () => {

const start = performance.now();

await fetch(icon_url);

const duration = performance.now() — start;

if (duration < 5) // loaded resource from cache
console.log ('Query had results');

else

console.log("No results for query parameter");

Listing 2: XS-Leak attack against example application.

need to reset the state of the cache, and thus use one of the known
techniques [50] to remove the icon from the cache. Note that as a
result of the recent network isolation defenses, this specific attack
is prevented, but it still allows us to clarify important points about
XS-Leaks during the different sections of the paper.

The example application is also vulnerable to other XS-Leak at-
tacks. For instance, detecting the size of the response leaks whether
there were any, and possibly how many, results [4, 44, 46]. Further-
more, a new connection might need to be established to retrieve the
icon image from the CDN, which also only happens if there is at
least one result. This can be detected by leveraging the global limit
on the connection pool [6]. In case the execution time of processing
the request depends on how many results are generated, this may
also create a timing side-channel that can be exploited [9, 45].

3.2 Definition and threat model

For the XS-Leaks discussed in this paper, we consider a threat model
where the victim lands on a web page that is (partially) controlled by
an adversary. This could either be a malicious web page containing
arbitrary code, a compromised web page, or a web page containing
a malicious advertisement. Unless stated otherwise, we consider
that no restrictions, e.g. through the sandbox attribute of an iframe,
are imposed on the attacker’s web page.

We define XS-Leaks attacks as follows: an attack where the ad-
versary leverages various browser operations and observes their
direct or indirect effects in order to infer information about cross-
site resources that reflect the state that the user has with a targeted
website?. These cross-site resources are typically dynamically gen-
erated based on the identity of the victim, which is inferred from the
included cookie, the requested endpoint, and (attacker-provided)
query parameters. Although attacks that aim to determine which
websites were previously visited by a user are closely related to
XS-Leaks attacks, these are out of the scope, and are known as

2This definition is in line with that of prior work (XS-Leaks Wiki [40] and COSI
attacks [42]), but makes it explicitly clear that the attacker aims to infer the state that
the user has with the targeted website.

history sniffing attacks or history leaks. These attacks on user pri-
vacy typically aim to infer the changes that are persisted in the
browser by interactions that were made by the user. For example,
the browser keeps track (locally) of which web pages a user visited,
and applies a different style based on whether the URL was visited
(which could be abused to leak previously visited pages [1, 16, 38]).
In contrast, XS-Leak attacks require any change that is persisted in
the browser to be the result by an operation of the attacker, e.g., an
attacker-triggered request made to the targeted server.

3.3 Formal model

In this section we first present the base model, as was introduced by
Knittel et al. [15], and then extend this model to more extensively
describe the underlying characteristics of XS-Leaks. Our model was
constructed by thoroughly analyzing existing XS-Leak issues, and
for each determining the actual cause and required operations. To
obtain a list of existing XS-Leak attacks, we performed a system-
atic literature review in which we considered all papers that were
published in the past five years at a well-known security confer-
ence (S&P, CCS, NDSS, USENIX Security, ACSAC, AsiaCCS), or
an attack- or web-focused workshop (WOOT, W2SP, SecWeb). We
included every paper that presented an attack where the threat
model matches the one required for XS-Leaks, and where the attack
could be used to leak information from cross-site resources. We
further extended this set of attacks with those reported in blog
posts, online articles, or in disclosed bug reports to major browser
vendors. In total we consider 38 distinct XS-Leak attacks (including
two that were discovered as a result of our research).

Base model:

e The URL resource of the web application that is being tar-
geted by the attacker is defined as url

e This web application can be in two different states, depend-
ing on the user’s authentication: S = {sg, s1}.

e Depending on the state S, the application will behave differ-
ently, e.g., by including an additional image; the differences
in this behavior is defined as D = {dy, d1 }.

e A cross-site leak is then defined as the function xsl() that
outputs a bit b’; more precisely: b’ = xsl(sdr, i,t), where
i € I represents the inclusion method that is used to trigger
the request to the state-dependent resource (e.g. including
the resource in an iframe), and ¢ € T is the leak technique
that is used to observe the difference cross-site (e.g. counting
the number of frames in the rendered web page).

e Finally, the state-dependent resource that is being requested
is defined as sdr € SDR, where sdrg = (url, (so, dp))-

Applying this to our running example, we get the following:

url = https://example.com/search?q=query

s € {no-search-results, at-least-one-result}

d € {no-icon-on-page, icon-on-page}

The inclusion method i is embedding the URL as an iframe
The leak technique ¢ consists of performing a timing attack
that aims to determine whether the inclusion of the web
page lead to the icon being cached

Extended model: We extend the model of Knittel et al. by in-
troducing the concept of components. These components are the
abstract representation of all the different aspects that are interacted



with when a resource is requested, parsed or rendered. Examples of
such components include the HTTP cache, the network connection
pool (at the level of the browser), the different DOM properties of
the attacker’s page and that of the rendered resource, or various
aspects of the operating system on the client side such as CPU
caches. We also consider components located on the server, which
may depend on the infrastructure and environment of the targeted
server, but will typically include the network layer at the OS-level
and the various aspects related to the execution of the web applica-
tion’s implementation. Based on the layer at which the components
are located, we can group them together in seven component groups,
five of which are located on the client side: attacker tab, victim
frame, victim tab, browser, and client OS. The remaining two com-
ponent groups are located on the server-side: environment (e.g. OS
or serverless computing environment) and web server.

Each component consists of a 3-tuple, where the first element,
c, represents the specific characteristics of the component. The
latter two elements of the tuple, oy, and oy, , represent the state
that the component is in, one for each state of S, i.e. the two
different states that the application can be in based on the user’s
authentication. Initially, these two states are equal, but they may
differ after the state-dependent resources have been included. For
example, the state of the HTTP cache is initially empty, but after
rendering the resource in state sg, a resource will be added to the
cache, whereas this would not happen in application state s, thus
resulting in different component states. We formally denote the
set of components as follows: C = {Cy,Cy,...,Cp}, where each
individual component is defined as follows: {c, o5, 05, } € C;. We
reference the state of the ith component, C;, for the first application
state, sg, as C;.0s,.

Next, we introduce the state-transfer and state-retrieval func-
tions. The state-transfer function, st, will execute a specific in-
clusion technique i on the targeted state-dependent resource, and
thus might bring the components in a different state. As such,
the aim of this function is to transfer the web application state
into the component state. We formalize this function as follows:
st: (sdr,C,i) — C’, where C’ represents the same set of compo-
nents but after inclusion of the sdr. This inclusion may cause the
initial state of a component to be altered, i.e. when C;.o5, # le .0,
or Cj.os, # C ;,0'51. For each component that was involved in the
state-transfer, the state may have changed differently depending
on the web application state (and thus depending which version
of the resource was included). We can describe the differential
component state in our model as . = Cj.05, ® Cj.05, (Where ®
is the XOR operator). This differential component state reflects
the difference in the final state of the component depending on
whether the resource in application state so or in s; was included.
For simplicity, throughout the remainder of the text, we will refer
to this differential component state as C;.%.

The state-retrieval function, sr, aims to subsequently extract
the differentiating state-changes that were introduced by the state-
transfer function. More precisely, given the set of components in
their initial state and possibly-altered state, C and C’, this function
will return the set of state-changes that could be detected with the
leak technique t. Formally, we represent this function as follows:
sr: (t,Cpn,C)) — L, where L represents the set of detectable (using

victim frame

victim tab attacker tab

web server

browser

server environment

client 0S

J

Figure 1: Visual representation of our XS-Leaks model.

leak technique t) state-differences (between C;.o5, and C}.0,). In
our running example, the state-difference is that in one application
state the resource will be cached, but not in the other application
state. We can detect this state-difference by using a timing attack
based on the response time.

The set of detectable state-differences, L, consists of two
parts, where the first one, A, represents valuative differences, e.g. a
difference in the number of frames. The latter part, ©, represents
differences in the time domain, where the resulting value of the leak
technique is exactly the same in both states, but where the timing
differs. Another example of this case, is where the processing time
of a certain request takes longer depending on the state of the user.
While the resulting response may be exactly the same, the time
it takes for the response to be received by the victim’s browser
will differ. We formalize the set of differences in both domains as
follows: L = {A, @} = {((3(), 51, ey 5n), (90, 91, ey Gm)}

In the case of our running example, we now get the following:

o We first transfer the application state to one of the compo-
nents by embedding the resource as an iframe: st(sdr, C, i).

o In application state sg, the state of one component, the HTTP
cache, will be altered, while this does not occur in the case
of s1: Cj.o5, # Cj.05y A Ci.05; = Cj.05,. As a result, the
differential component state is non-empty: C;.X # 0.

e Using a timing attack as leak technique, we can now retrieve
the state from the component: sr(t, C;, Cl’)

o This results in a single detectable state-difference in the time
domain: L = {{}, {60}}, where ) represents the timing dif-
ference when requesting a cached vs. non-cached resource.

A simplified visual representation of our model can be found
in Figure 1, showing the seven component groups that each have
their own state. Furthermore, when a state-dependent resource
is included (black arrow), it can trigger state-changes in all the
components that it passes through (as indicated by the red circles).
Extracting the detectable state-differences is then performed by
launching a leak technique in the state-retrieval function (indicated
by the purple dotted line).

3.4 Conditions for XS-Leaks

Using the extended formal model, we can now express the con-
ditions that need to be met for an XS-Leak issue to exist. A first
prerequisite is that the state of a component needs to be changed
as the result of an inclusion method, i, in at least one of the two
application states, sy and s1, expressed formally: (3C;, i)(C;.os, #
Cj.as, V Ci.os, # C|.05,), where C] = st(sdr,C;, i). Furthermore,



the state-changes that occur in the component need to be differ-
ent between the two web application states (which result in two
different responses). Concretely, this means that the differential
component state of at least one component needs to be non-empty:
(3Ci,1)(C;.05, ® Cj.05, # ), or simplified: (3Cy, I)(C.Z # 0).

The other prerequisites for a successful XS-Leaks attack is that
it needs to be possible to extract this differential state from the
component. This means that there needs to exist a leak technique,
t, for which the state-retrieval function returns a non-empty set of
detectable state-differences. Formally, we can express this as follows:
(3Ci,1,t) [sr(t, Ci, C)) # 0]. These detectable state-differences can
be either valuative differences or differences in the time domain:
L0 A+0VvO=£0.

Using this extended representation of the XS-Leaks model, we
can better reason about the cause of the different attacks that are
known to date (Section 4), determine various methods to detect
new attacks (Section 5), analyze the different strategies used for
defenses (Section 6), and whether these are sufficient to provide a
complete protection (Section 7).

4 XS-LEAK ATTACKS: CURRENT STATE

Although the term XS-Leaks is relatively new, the issues have been
known for more than two decades, e.g. in 2000, Felten and Schneider
described how the time to request a resource leaked information
about its cache status. Prior work on categorizing XS-Leaks has
mainly focused on enumerating the different known techniques
and grouping them by the technique that is used [40], or based
on the differences in the resource that can be detected [15, 42]. In
this section we introduce a new classification method that is based
on our model and aims to capture the intrinsic properties of XS-
Leaks; namely the component to which the web application state is
transferred, the inclusion method that is used for this state-transfer,
and the technique that is used to finally extract this state.

4.1 Classification attributes

Based on our model of XS-Leaks we now propose a classification
that can be used to uniquely distinguish different XS-Leak attacks.
This classification allows us to capture which types of XS-Leaks
have already been found, and can thus be used as a means to guide
future research (which we explore in more detail in Section 5). We
determine several attributes that can be appointed to an XS-Leak,
most of which originate directly from the model.

Component group As described in our model (Section 3), this
attribute captures the group of components in which the relevant
state-change occurs that eventually leads to the XS-Leak.

Inclusion method This property reflects the inclusion method
that is used to trigger the state-transfer. For reasons of clarity,
we divided these in groups: iframe (where the attacker embeds
the state-dependent resource in an iframe), other window (where
the resource is rendered in a different tab, using window.open()
or window.opener), and direct (using a DOM AP, e.g. <img> or
fetch(), to include the resource — here we also indicate whether
a specific API or any API is used).

State difference For this attribute we also summarized the possi-
ble values in three different groups: event fired (when an event

is fired that can be observed by the attacker), change of a prop-
erty (when the value of a certain property within the component
changes, e.g. a new entry being added to the cache), and con-
sumption of a limited resource (when there is a resource in the
component that can only be consumed a limited amount of times,
e.g. the Cache API has a global quota).

Leak technique The leak techniques extract the altered states
from the components. These can be as straightforward as observ-
ing the time that an event occurs, or reading out the value of a
certain property. Leak techniques may also be more complex, and
may require probing. For instance, it is not possible to directly
determine the cache status of a resource, but instead a timing
attack needs to be used.

Information in timing For certain XS-Leaks the state-change
that occurs does not leak any sensitive information about the
resource. Instead, the time that the state-change occurs is what
leaks the information. With this attribute we indicate whether
the XS-Leaks only has detectable differences in the time domain;
formally: A=0A© #0.

Idempotency When after inclusion the state of certain compo-
nents changes permanently and irreversibly, the XS-Leak is con-
sidered to be non-idempotent. For example, once a resource has
been cached, it will remain cached until it becomes invalid. Conse-
quently, the attack can only be executed once (unless there exists a
technique to revert the state-changes). In other words, an XS-Leak
is idempotent if there exists a method that can revert the state-
changes made to the affected component: (3p)[p(C;.0) = Cy.0].

Differentiating aspect Finally, we capture the various aspect(s)
of the state-dependent resource that are detectable. For brevity,
we categorize these in four groups: headers, content, metadata
(such as size of the response), and generation process.

4.2 Applying the classification

We now apply our classification to all the different XS-Leaks that we
found in the systematic literature review. We group together attacks
based on the core mechanism that is used to leak the information.
For instance, Bortz and Boneh showed that the time to download
a response relates to the size of that response [4]. Gelernter and
Herzberg introduce an amplification attack where the difference
in response size grows extensively [9, §3.1], making the attack
significantly more accurate, but still uses the original mechanism
to leak the information. Similarly, in another attack introduced by
the researchers, the execution time on the server is amplified [9,
§4], which is similar to what Van Goethem et al. measure in their
timeless timing attacks [45].

The classification of known XS-Leak attacks is shown in Table 1,
and a brief summary of each attack is provided in the Appendix,
Section A. Based on these results, we can make several observations.
We find that there is a lot of diversity in the attacks: each component
group is responsible for at least one attack. Furthermore, the ma-
jority of the leaks are caused by state-changes in the attacker page.
We believe the reason for this is twofold. First, most mechanisms
that can be used to include remote cross-site resources originate
from the attacker page, and any resource-dependent parsing or
processing is likely to introduce a leak. Secondly, the state-changes
that occur in the attacker page are mostly directly observable and
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thus easier to detect, and in several cases even described in the
specification. On the other hand, it is not directly clear that creating
a new connection will consume a limited resource (the connec-
tion pool), which only has an observable side-effect after actively
probing for the state-change.

Another interesting observation is that the mechanisms aimed
at defending against XS-Leaks can also be the source of a leak them-
selves. For instance, if the CORP header is only enabled based on the
state of the user, an attacker could leverage this to leak information.
Hence, it is important for web developers to consistently apply the
defenses, and ensure features are not enabled conditionally.

5 XS-LEAK ATTACKS: FUTURE RESEARCH

To date, most XS-Leaks that have been discovered and reported are
isolated issues that result from evaluating a particular API. Conse-
quently, this does not provide any information about the possible
number of XS-Leaks that currently remain undetected. We believe
that systematic analyses are paramount for future research to dis-
cover previously unknown XS-Leaks, or to prove the absence of
XS-Leaks in certain components. To guide this systematic anal-
ysis, the concept of components, whose state can change as the
result of an inclusion, is instrumental. We believe that two aspects
are needed to further map out the attack landscape on XS-Leaks,
namely carefully listing all the possible components involved in
the inclusion process, and for each component detecting whether
the application state is transferred into the component state. Next,
we explore these two aspects in more detail.

5.1 Enumerating components

In our classification we considered seven different component
groups, both on the side of the client as well as on side of the
server. However, each of these component groups can have numer-
ous sub-components, which each may have their own state. As
such, by mapping out all the different components in the smallest
fragment possible, researchers can determine which aspects could
possibly lead to XS-Leaks. More concretely, any interaction that
is made with a state-dependent resource, regardless of whether
this is persistent (e.g. adding it to the cache) or ephemeral (e.g.
verifying the content type), could possibly trigger a change in the
state of the component. Any such state-change could then result in
an XS-Leak, provided there exists at least one leak technique that
can infer this state-change. It is important to note however that
not every state-change will lead to an XS-Leak, as it might not be
feasible to retrieve the state from certain components.
Systematically enumerating all components is an arduous task as
it involves operations that occur at various levels, each of which can
be extremely complex or not well documented. As such, we believe
that an iterative process guided by information that is already
available (e.g. web specifications) would be most practical. More
precisely, researchers could for each component group determine
all the different operations that occur on the resource, and then
for each operation determine which components are involved, in
an increasingly fine-grained manner. As the list of components
can be considered cumulative, any research that further refines the
components would contribute to mapping out the threat surface.

5.1.1  Novel attacks on determining triggered requests. As part of
our research, we partially analyzed the various sub-components
of the little-explored server environment component group, result-
ing in two novel attacks that can leak the number of requests that
were initiated by the user, e.g. as the result of rendering a state-
dependent resource. Both attacks leverage a limit that is imposed
on requests (A = {consumption_of_limited_resource}), which can
be extracted by a probing leak technique. The first attack abuses the
fact that web servers limit the number of requests that can be made
over a single connection. For some of the most popular web servers,
this limit is set by default to 100 (Apache, via the MaxKeepAliv-
eRequests directive, and older nginx versions) or 1,000 (newer
nginx versions, via the keepalive_requests directive). Once this
limit is reached, the web server will close the connection. In an
attack, the adversary could first trigger the rendering of the state-
dependent resource (e.g. by loading it in an iframe), which would
initiate either n or n — 1 requests, depending on the state of the
user. Subsequently, the attacker sends 100 — n requests and then
determines whether the next request would require opening a new
connection (e.g. based on a timing side-channel). From this, the
attacker can infer whether n or n — 1 requests were made and thus
reveal the user’s state.

The second attack follows the same principle, but instead lever-
ages the limit imposed by rate-limiting systems that aim to protect
the website. Once the predefined maximum number of requests
within the allotted time window has been reached, the web server
will most likely generate a different response. This could include
closing the connection, or returning an error message. This could
in turn be probed by the attacker. The main difference between
the two attacks is that the second one is URL-specific, whereas
the first one only reveals information about the total number of
requests sent to a specific origin. Furthermore, browsers with a
keyed connection pool can defend against the first attack (under
the condition that the embedding frame is part of the key), whereas
the rate-limit is most likely to be IP-based. Consequently, a keyed
connection pool would not deter this attack.

5.2 Detecting component state-changes

An important prerequisite for the existence of an XS-Leak, is that
after inclusion of the state-dependent resource, the state is trans-
ferred to the component. As such, only components that experience
a state-change can be the source of XS-Leaks. In order to detect
this, we propose the following three-pronged approach, which is
agnostic of the component, or component group, that is being eval-
uated. First, a web server should be set up that serves resources that
each have a different differentiating aspect (d € D), compared to a
baseline resource. This is needed because a component may only
trigger a state-change when the differentiating aspect is present.
Secondly, a state-monitoring system can be set up that tracks
the state of the investigated components. How this can be achieved
largely depends on the component group that is analyzed. For in-
stance, for components that relate to the DOM, all the different
property values, and APIs could be enumerated, capturing a snap-
shot of the state of the DOM. On the other hand, the state of other
component groups such as the browser or client OS might be less
accessible, and would thus require additional effort to evaluate.



For example, this might require monitoring the value of certain
variables in the browser or the kernel, or determining whether
certain resources such as the disk are accessed. The monitoring
of variables would cover the cases whether the state difference is
the consumption of a limited resource, or the change of a property.
However, a state-change may also initiate side-effects, such as firing
an event, and to capture these, the execution path should also be
monitored as any (consistent) difference in execution could result
in an observable side-effect.

Finally, using the exhaustive list of inclusion methods (i € I),
each resource, pairwise with the baseline without the differentiat-
ing aspect, can be included. By comparing the state of the analyzed
component before and after the inclusion, and monitoring the ex-
ecution trace, it now becomes possible to evaluate whether the
differentiating aspect triggers a different state-change in the com-
ponent. Through this method, every possible state-change will be
captured, and, as a result, it is possible to determine whether the
component could potentially be the source of an XS-Leak. Once a
differentiating state-change has been detected, it is still required
to determine whether there is any leak technique that can reveal
this state-change, which can be highly specific to the associated
component and the type of the state-change. Hence, we believe
that this last step cannot be automated.

6 XS-LEAKS DEFENSES: CURRENT STATE

In recent years, several new defenses against XS-Leak attacks have
been introduced to the web platform. In general, all defenses fol-
low one of the three different strategies: preventing state-changes,
isolating components, or ensuring that requests and responses are
stateless. In this section we provide a brief overview of each strategy
and the defenses that follow them.

6.1 Preventing state-changes

As we have shown through our model, XS-Leaks can exist when
the state of a resource is transfered to the state of a component,
in particular when the components is brought in a different state
depending on the response that is returned. By preventing any state-
changes from occurring in certain components, the XS-Leaks that
they introduce will be mitigated. If we consider D as the model
where the defense has been applied, and U as the unprotected
model, we can formally describe the strategy as follows:

U : (Yx € [i,j,j > i)(Ch.05, UCr.0s, 0 ACL.Z # 0)

D : (Vx € [i, j])(Cy.05, = Cx.05y A Ci.05, = Cx.05, A Cy.Z = 0)
More precisely, without the defense applied, there is at least one
component, Cy, that after inclusion (Cy, = st(sdr,Cy,i)) has an
altered component state in at least one of the two application states,
and the resulting component state is different depending on the
application state, i.e. the differential component state is non-empty.
When the defense is in place, there are no state-changes that occur
in the component, and therefore the differential component state
will also be empty.

In practice there are two defenses that follow this strategy: fram-
ing protection and response blocking. Concretely, framing protec-
tion can be enabled by setting the X-Frame-Options header or by

using the frame-ancestors directive of CSP. When the browser en-
counters any of these two policies that indicate the resource should
not be embedded in an iframe, it will stop loading the resource
and prevent if from rendering. Consequently, any state-change that
would occur by rendering the resource, will now be prevented. In
our running example, the icon image will no longer be added to the
HTTP cache when a framing protection has been set on the page,
and thus no state-change occurs. In general, this defense will block
all XS-Leaks that rely on iframes as the inclusion method.

Defense: framing protection
XS-Leaks thwarted:

i = {iframe] A (C;. j = {victim_frame} V d = {content})

In order to prevent cross-site responses from being accessible in
the same renderer process, some browsers will block the loading
of “sensitive” resources through the Cross-Origin Read Blocking
(CORB) mechanism. This defense, originally intended to thwart
Spectre attacks, will stop loading a response when it detects that
its content type is potentially sensitive (i.e. JSON, HTML and XML).
Alternatively, a website could also directly indicate that a certain
resource is not intended to be included in a cross-site context by
setting the Cross-Origin-Resource-Policy (CORP) header [26].
By blocking the further loading of such a response, no state-changes
will occur after the check. Because this check occurs after the head-
ers have been parsed, it is still possible that the parsing of the
headers can cause certain state-changes. Furthermore, the check
occurs in the browser component group, and only when it is in-
cluded directly from an attack tab. As a result, state-changes may
have still occurred in the component groups that were involved in
the inclusion before this check was performed (client OS, browser,
server environment and web server).

Defense: response blocking
XS-Leaks thwarted:

d # {headers] A C;_j = {attacker_page] A i = {direct]

6.2 Isolation defenses

A second strategy to defend against XS-Leaks is to allow the state-
changes to occur in the components, but prevent the attacker’s
page from accessing them by means of isolation. Concretely, in the
defended case there is no longer a leak technique that can be used
to extract the state from the component:

U (Yx € [i,j],3t € T)[Cy.Z # O A sr(t,Cx, Cy) # 0]

D : (Vx € [i,j],Vt € T)[Cx.Z # 0 A sr(t,Cx,Cr) = 0]
To date, there are three defenses that follow this strategy: network
isolation, cross-origin opener policy, and site isolation. The net-
work isolation defenses partition certain aspects of the browser
such as the HTTP cache and various network-level properties, e.g.
the connection pool (a complete list can be found in the Chromium
explainer document [23]), according to the top-level document from
which the resource was requested. Chromium-based browsers ad-
ditionally add the embedding frame as part of the isolation key.
On Safari, only the HTTP Cache has been partitioned [48], while
other network properties remain shared among different tabs. In



an attack, when the resource is rendered in a new tab (victim win-
dow), the attack will not be able to determine whether this caused
a resource to be added to the cache, because the attacker’s HTTP
cache is isolated from the HTTP cache used by the victim site.

Defense: network isolation
XS-Leaks thwarted:

Ci € {HTTP_cache, connection_pool, ...} A i # {direct}

Another isolation defense is based on preventing attackers from
retaining references to other windows. This defense can be enabled
through the Cross-Origin Opener Policy (COOP), by setting the
similarly named response header [25, 52]. At the time of this writing,
the header is supported by all major browsers. In essence, when the
policy’s header value is set to same-origin, it ensures cross-origin
pages do not have a reference to the other window. For example,
this prevents the attack that counts the number of frames in a
page from accessing the win. frames.length property. Because
an attacker page can also include the target resource in an iframe,
it is important that this defense is complemented with framing
protection.

Defense: COOP
XS-Leaks thwarted: Ci..j = {victim_window}

Finally, to counter attacks that leverage state-changes occurring
at the microarchitectural level, or that are related to the process in
which web pages are rendered and executed, a new isolation primi-
tive, site isolation, was introduced [30]. In essence, site isolation
ensures that documents of different sites are rendered in a separate
process. This means that as long as no sensitive cross-site resources
are loaded into the renderer, these are protected from attacks such
as Spectre. As such, resources that are included directly may still
cause p-architectural state-changes.

Defense: site isolation
XS-Leaks thwarted: Ci..j = {u-arch} A i #({direct}

6.3 Stateless responses

The third defense strategy that can be used to mitigate XS-Leaks is
to ensure that all responses to illicit requests are exactly the same,
regardless of the web application state. To accomplish this in all
components, the generation of the response should not be based
on the web application state. When the two web application states
are identical, e.g. because the user’s authentication is not included
in the request, all components will remain in their original state.

U : (Fx € [i,j])(s0 # s1 Ado # d1 ACL.Z # 0)

D:(Vx e[0,n])(so =51 Ady =di A C;C.O'SO = Cy/c-0$1 = Cx.0g,)
In practice, there exist two defenses that are based on ensuring
the responses remain stateless, namely SameSite cookies and Fetch
Metadata request headers. When a cookie’s SameSite attribute
is set to Lax (the default in Chromium-based browsers [5]), the
cookie, and thus the user’s authentication, will not be included
in the request [24, 33]. As a result, the server will not be able
to authenticate the user and will thus always return a stateless
response. Because the SameSite cookie will still be included in

navigational GET requests, attacks that rely on opening a new
window are still possible.

Defense: SameSite cookie (Lax)
XS-Leaks thwarted: i € {direct, iframe}

To give web developers more insights on what caused the browser
to send a request, the Fetch Metadata request headers provide
information on the context in which a request was made. More
specifically, the Sec-Fetch-Site header indicates whether the re-
quest was made in a cross-site, same-site or same-origin context, or
whether the request was the result of a navigation request. Similarly,
the Sec-Fetch-Mode indicates the “mode” in which the request was
made: using CORS or not, as the result of a navigation, or for a
WebSocket. By combining the different headers and evaluating their
values before the request is processed, the server can determine
the legitimacy of the request and return a static (stateless) error
message when the request is considered illegitimate. A typical and
recommended way of applying a policy based on these request head-
ers is via the resource isolation policy (RIP) [58], which only allows
same-site requests or GET requests that result from navigations or

embedding.

Defense: Fetch Metadata (RIP)
XS-Leaks thwarted: i = {direct}

7 XS-LEAKS DEFENSES: FUTURE RESEARCH

Although many different defenses exist, using one of the three
different strategies, it remains to be seen whether these are suffi-
cient. In this section we explore whether it is feasible to provide a
complete protection against all possible XS-Leak attacks, including
those that have not yet been discovered to date. Furthermore, we
discuss directions for future work to explore whether the current
set of defenses are sufficient to provide websites with the necessary
protections.

7.1 Complete protection against XS-Leaks

As we have constructed an expression that captures the set of
possible XS-Leaks each defense protects against, we can simply
apply constraint solving to determine whether there exists any set of
defenses for which no XS-Leak attack is still possible. Unfortunately,
we find that there is no combination of defenses that provides a
complete protection against all XS-Leaks, posing an interesting
direction for future research. The main culprit for this are attacks
where a different window is used as the inclusion method, as there
is no defense that can completely protect against these. Although
COOQOP prevents the attacker from reading out any state from the
window in which the resource was rendered, any intermediary
component group between the victim tab and web server may still
exhibit state-changes as a result from rendering the resource (e.g. it
is still possible to observe the response generation time). However,
it is important to note that although COOP does not provide these
complete protections in our model, it does significantly hinder
attacks in practice. For each bit of information that the attacker
would try to extract, a new window needs to be opened, requiring
a user interaction.



The minimal set of currently available defenses that provides
the best possible protection against XS-Leaks is the combination of
SameSite cookies, COOP and site isolation. The SameSite attribute
on cookies ensures that all cross-site requests, either included di-
rectly or via an iframe, are stateless. Additionally, COOP provides
the best available protection for when resources are included in a
different window. Finally, site isolation ensures that any microarchi-
tectural state-changes that were caused by rendering the resource
cannot be observed.

In case SameSite cannot be used, e.g. because the website relies
on specific cross-site interactions, this defense could be exchanged
for the combination of RIP (based on Fetch Metadata) and framing
protection. However, the framing protection provides a strictly less
extensive defense compared to SameSite cookies as the stateful re-
sponse body will still traverse several components, possibly causing
state-changes. Although no side-effects caused by rendering the re-
source can be observed, it might still be possible to leak information
about the metadata, headers or generation process of the resource.
Instead of using the framing protection set in response headers,
websites could also use Fetch Metadata to block all requests that
originate from iframes (using a Framing Isolation Policy, based on
the Sec-Fetch-Dest header). Although this mechanism does not
provide the same flexibility as the framing protections because it
does not allow specific frame ancestors, blocking the request early
on does prevent state-changes in all components. This example
shows that cross-site interactions may complicate the implemen-
tation of XS-Leaks defenses. In the remainder of this section, we
explore future research directions that could improve this situation.

7.2 Defenses and cross-site interactions

Many of the current defense mechanisms allow websites to either
opt-in or opt-out of cross-site interactions. For example, the CORP
header can only be set to same-origin, same-site or cross-site.
This limits the granularity in which the defense can be applied,
and it may be prohibitive to use this in conjunction with website
functionality that relies on cross-site interactions. Examples of such
cross-site interactions include social plugins, authentication flows,
third-party video content, ....In many cases, these require the user’s
authentication to provide the intended user experience. It is for
this reason that the SameSite-Lax-by-default policy in Chromium
makes an explicit exception for cookies that were set within the last
two minutes, as this would cause various authentication flows to
break [31]. As the adoption of XS-Leaks defenses is slowly ramping
up, we believe that it is an interesting direction for future work
to evaluate whether the current set of defenses is sufficient to
provide the maximum protection for websites that rely on cross-
site interactions.

To further protect websites from XS-Leaks, web browser could
enable certain policies by default (as the ones indicated above) or
try to eradicate legacy features from the web platform (e.g. the
frames.length property stems from the time when iframes were
widely used to build websites). Based on the most recent data (Oc-
tober 2021) from the HTTP Archive? crawl over the home page
of 5.5M sites, we find that there are only 3.07% of these sites to
which at least one request was initiated in a cross-site context. This

3https://httparchive.org/
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Figure 2: Adoption of XS-Leak defenses over time (log y-axis).

clearly indicates that most sites do not intend to be included by
other sites at all, and thus would greatly benefit from policies that
are enabled by default. As such, we believe that research in the
direction of determining how XS-Leaks defenses can be enabled by
default without negatively impacting intended functionality could
significantly advance the state of security on the web.

8 IMPROVING DEFENSE DEPLOYMENT

While several defense mechanisms exist that can adequately protect
against virtually all practical attacks, an obvious prerequisite for
these defenses to be effective, is that websites need to deploy them.
In this section we explore to what extent websites already make
use of them, introduce LEAKBUSTER, a web application to facilitate
deployment, and discuss the difficulties that web developers are
still facing based on a case-study where XS-Leaks defenses were
deployed at large scale.

8.1 Current adoption rate

To analyze the evolution of the adoption of XS-Leaks defenses, we
rely on the public datasets provided by HTTP Archive, containing
detailed information on the visits of home pages of approximately
5.5M sites. In all same-origin responses, we look for the presence
of the three main headers that control the XS-Leaks defenses in
the browser. In Figure 2 we show the number of sites that adopt
one of the policies, or a report-only (RO) version of it, over the
past two years. This evolution shows that the adoption of security
features is gradually increasing. Furthermore, we expect this growth
to continue: e.g. in October 2021 we find more sites that enable
the report-only mode of COOP (16,223), compared to those that
implement the enforcing version (8,997). This is indicative that a
growing number of websites intends to use this mechanism, but
these are still in the early stages of deployment.

The most common XS-Leaks defense mechanism in use is CORP,
with 46,805 sites setting the header in October 2021. It should be
noted that the vast majority of these set the CORP header to cross-
site, which does not provide any additional protection. However,
if sites want to use COEP (and thus be able to make use of certain
sensitive browser features), all resources that it includes need to set
a CORP header. As websites include many third-party resources,
many of which they do not have under their control, this will likely
complicate the adoption of COEP. To facilitate the deployment of
COEP, browser vendors are now experimenting with a creden-
tialless version of COEP, allowing resources that were requested
without credentials to be included without a CORP header [? ].
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8.2 LEAKBUSTER

Although the adoption of XS-Leak defenses is steadily growing,
sites that deploy them only represent a minute fraction of the web:
0.84% for CORP, 0.16% for COOP, and 0.02% for COEP. A possible
reason for this low adoption rate is that XS-Leaks are still not widely
known or understood. Furthermore, given the extensive number
of defenses, and various intricacies that need to be considered to
deploy a complete solution, it may be hard for web developers to de-
cide which defenses need to be deployed, and whether there are any
alternatives. To tackle these issues, and facilitate the deployment of
defenses, we introduce LEAKBUSTER as a dynamic web interface?.
The tool is based on our model, the classification of attacks, and
the expressions that capture which attacks are thwarted by certain
defenses. Upon entering the values for the relevant security headers
and policies, web developers will be presented with a list of XS-Leak
attacks they are still susceptible to along with a list of prioritized
suggestions. By following the recommendations of LEAKBUSTER,
website owners will be able to protect their users to the best extent
possible.

8.3 Challenges of adoption

As we discussed in Section 7.2, website are still facing several chal-
lenges when trying to adopt XS-Leak defenses, especially when
the website wants to support cross-site interactions. In this section
we elaborate on these challenges based on a case-study of a large
technology company that deployed COOP and RIP based on Fetch
Metadata across 500+ services, serving over a billion users. The
information and insights presented here were obtained by working
and discussing with the team that deployed these defenses.

When a web application is published, other sites may (legiti-
mately) interact with it in ways that are not clear to the web de-
velopers; e.g. other sites might want to open the application in a
pop-up and close this pop-up after some time. If the web applica-
tion would set a COOP policy, this behavior would break as the
embedding web site would not be able to close the pop-up. As a
result, just setting an enforcing policy could interfere with intended
behavior and deteriorate users’ browsing experience. To overcome
this challenge, it is generally advised to gradually roll out a de-
fense and first enable a report-only version of the defense; these
are available for both COOP and COEP, and as Fetch Metadata is
enforced on the server side, it is possible to generate reports when
a violation occurs. Unfortunately, the reporting of COOP violations
is not complete, as this could possibly leak additional information
in specific cases. We document these reporting gaps in Appendix B.
We believe that further research on this topic is needed to ensure
that the violations captured in report-only mode match those that
would occur in the enforcing mode. This is necessary for web de-
velopers to reliably determine which violations could still occur
when switching to an enforcing policy.

In our case study, violations of COOP and RIP were captured
for several weeks in a report-only mode. Surprisingly, in contrast
to CSP violations, which are known to be very noisy [17], the un-
intended violations were fairly limited, and were mainly due to
browser extensions or JavaScript libraries that would interact with
window.opener. After filtering these undesirable interactions, ~2%

“https://distrinet.github.io/leakbuster/.

of all endpoints (spread across 14% of services) were deemed to
need an exempted policy of unsafe-none, as these relied on cross-
site interactions. For another 14% of services, the COOP header on
all endpoints needed to be relaxed to same-origin-allow-popups
in order to allow these single-page applications to interact with
windows opened as popups, e.g. for authentication. For RIP, ~3% of
all endpoints (representing 8% of services) needed an exemption.
Given that only a minority of services required an exemption of the
policy, this is encouraging for future work that aims to enable poli-
cies by default. Nevertheless, the fraction of exempted endpoints
remains non-negligible, and additional research is needed to deter-
mine how these endpoints can be further protected, possibly with
a more fine-grained policy.

9 RELATED WORK

Most closely related to our work, is the concurrent work by Knittel
et al. [15], who also introduce a formal model. Via a preprint pro-
vided to us by the authors, we detected many similarities in both
models, and chose to adopt the same formulation for reasons of
consistency. By introducing the concept of stateful “components”,
we are able to better capture the underlying characteristics that
cause XS-Leaks, and use that to propose a methodology to identify
new vulnerabilities, or ensure the absence thereof. Knittel et al. also
perform an evaluation of different browsers and identify several
novel XS-Leak attacks as a result of their analysis. Other works
that provide an extensive overview of XS-Leaks, is the research by
Sudhodanan et al. [42] and the XS-Leaks wiki [40]. These works
mainly focus on the type of information that can be inferred, and
introduce classes that are mainly descriptive of how an attack is
performed. In our work, we introduce an extended model that ab-
stracts away from the specific technicalities of the different attacks,
allowing us to capture the intrinsic characteristics. Furthermore,
we leverage this model to analyze XS-Leak defenses, categorizing
these according to three main strategies.

For an overview of known XS-Leaks attacks, we refer to the
classification in Table 1, with an accompanying summary of each
attack in Appendix A.

In the context of violations to the same-origin policy, Schwenk
et al. evaluated the implementation of the same-origin policy in
different browsers and detect varying browser behavior because
of the lack of a formal specification [35]. Other violations of the
same-origin policy have been explored by Somé, who found that the
permissions of browser extensions could be leveraged to leak data
across site-boundaries [39]. Schuster et al. present an attack where
contention on the network layer is abused to infer which videos are
being played by the user based on the bursts on the network [34].
We believe that this technique could potentially also be used as an
XS-Leak, to infer information about web pages. Finally, Franken et
al. explored how same-origin policy violations could be abused in
browser engines that are used to display e-books [8].

A related research topic that often leverages similar techniques as
XS-Leak attacks, is history sniffing. In contrast to XS-Leaks, history
leaks aim to infer the state that is retained in the browser by a prior
visit of the user, and thus the state-introduction occurs inadvertently
(and is not initiated by the attacker). The state-retrieval stage can
be very similar to XS-Leak attacks. For instance, an adversary can
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exploit a timing leak in CSS filters to extract whether a link is
displayed in the :visited style [1, 38]. Similarly, in older browser
versions, the attacker could simply read out the computed style to
infer whether a certain URL was previously visited [3, 38]. More
recently, Karami et al. [13] and Lee et al. [18] showed that the
service worker cache could also be exploited to infer whether a
user previously visited a specific website.

10 CONCLUSION

XS-Leaks are complex and can occur in many different components
across the web ecosystem. In this paper we abstract away from the
specific details of the techniques and introduce an extended formal
model to create a better understanding of the intrinsic character-
istics of the attacks. We show that a successful XS-Leak attack is
performed in several steps: first, the adversary aims to transfer the
web application state to a susceptible component, and subsequently
retrieve the detectable state-differences. By considering these three
aspects (stateful components, state-transfer, and state-retrieval) sep-
arately, it becomes clear that the strategies used to defend against
these attacks can be linked directly to disabling one of the steps
in the attack process. Based on the logic expressions that capture
which XS-Leak issues are mitigated by a certain defense, we find
that with the current set of defenses, not a single combination exists
that can theoretically thwart all attacks. As some of the defenses
add additional constraints (from the attacker’s perspective), we
believe that with strict policies, a complete solution against practi-
cal attacks is available. Finally, throughout this paper, we discuss
several possible directions for future research that aim to improve
the general state of security in the context of XS-Leaks, both in
uncovering the complete threat surface, exploring defenses that are
suitable for all intended web functionalities, and finding ways how
these can be easily deployed at large scale.
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A SUMMARY OF XS-LEAKS

(in)valid script/image/... When including a resource as a script or an
image, this will trigger an error event in case the content of the resource
does not match the expected content. For instance, including an HTML
resource in an <img> element will trigger an error event, whereas a valid
image resource will result in a load event.

client redirect (load event) When a document resource is included as
an iframe, the load event will be fired every time a document is loaded.
Therefore, when a client-side redirect occurs after the document has
loaded, the load event will be fired multiple times.

server redirect (max redirect count) According to the Fetch specifica-
tion, when twenty server-side redirects occur, a network error will be

returned. As such, to determine whether a specific resource causes a redi-
rect, the attacker can first make a request to their own server and redirect
19 times, after which a redirect to the target resource occurs. If this re-
source redirects, a network error can be observed, otherwise the resource
will be loaded. Note that this method can also be used to determine the
exact number of redirects that occur.

server redirect (CSP violation) By defining a (restrictive) Content Secu-
rity Policy on their page, the attacker can determine from which hosts
resources are allowed to be loaded. In case a resource from a different host
is loaded, this will result in a violation of the CSP, which can be observed
by listening for a securitypolicyviolation event. As such, this allows
an attacker do determine whether a resource redirects to a host that is not
defined in the allowed sources according to the attacker’s defined CSP
policy.

server redirect/status (AppCache) Entries in the AppCache manifest
that redirect or have a non-200 status code will cause an error event
on the applicationCache object; in case no redirect occurs, the cached
event will be fired. This allows an attacker to determine whether a certain
resource will cause a redirect.

server redirect (Fetch manual) When the redirect option of in the fetch()
call is set to manual, the returned Promise will resolve in case a redirect
happens, otherwise the promise will be rejected. The attacker can deter-
mine whether a redirect occurred by interpreting the resolution of the
promise.

element id focus When a document resource is loaded in an iframe where
the URL fragment is set to the ID of a DOM element on the page, the
browser will focus this iframe, causing the embedding (attacker) page to
lose focus, which can be observed by listening for the blur event.

overly broad postMessage To allow for cross-site communication, the
postMessage API can be used. For instance, an embedded page can send a
message to the top-most page by using top.postMessage(msg, origin).
The second argument of this function defines the origin for which the
message is intended. If this is set to the wildcard *, the message will be
sent regardless of the origin of the attacker.

detect CORB’ed JSON responses When a valid JSON document is in-
cluded as in <script> element, it will cause a SyntaxError, which can
be observed by listening to the error event. However, if the response
is blocked by CORB, the body will be emptied, and no syntax error will
occur.

detect CORP header Similar to the CORB’ed responses, if a CORP header
is present and it is not set to cross-origin, it will be blocked. Alterna-
tively, to detect it when it is set to cross-origin, the attacker can set
the COEP header on their page to require-corp, which will prevent the
resource from loading if the CORP header is not present.

detect COOP header When a page sets the COOP header, it will prevent
other pages from retaining a reference to it. Hence, to check whether the
COOP header is set, the attacker could open the resource in a new window,
and then verify whether the reference to this window is still available.

detect XFO (<object>) When a document resource is included in an <object>
element, and it sets the X-Frame-Options header to DENY, no load event
will be fired on the object element. Without the XFO header, the event
will be fired.

detect XFO (Resource Timing) Typically, when a resource is loaded, a
new PerformanceResourceTiming entry is created. However, in Chromium-
based browsers, this does not happen when an XFO-enabled document
resource is loaded in an iframe.

response size estimate (parsing) The time it takes to parse a resource
as an audio or video element depends on the size of the resource. Hence,
by measuring the time (repeatedly), an estimation of the response size
can be made.
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response size estimate (Cache API) The time it takes to add or remove
a response to the cache (using the Cache API), depends on its size. By
repeated measurements, an estimate of this size can be obtained.

response size (Quota API) To prevent abuse, the available quota that
each website is provided with, is limited. The available quota can be
retrieved from by calling the API. A website can observe the currently
allotted quota, force the target resource to be cached (using the Cache
API), and observe the quota again. The size of the resource will be the
difference between the two values.

response size (global quota eviction) Next to a per-site quota, there also
exists a global storage quota. When this limit is reached, the least-recently
used site will be evicted. If an attacker can force one of their sites to be
evicted (of which they know the size), they can retrieve the size of the
response by adding the target resource to the cache and then fill up the
remainder of the global quota byte by byte, until another eviction occurs.

cross-site pixel stealing When a page embeds a document resource in a
frame, it can perform certain manipulation on what is visually displayed.
For instance, SVG filters and CSS rules can be applied. In case the execution
of applying these filters on untrusted data, i.e., the pixels of a cross-site
page, is not performed in constant-time, the timing information can be
abused to extract text and other visuals from the targeted page.

Performance API entries Depending on the response that is returned,
an entry in the Performance API may or may not be made. For instance,
in case of an error (status code 500), or an empty response, no entry
will be created. In case of a redirect, the timing values may also differ.
Furthermore, in case the target is included as an iframe and is blocked by
the XSS auditor in Safari, no performance entry will be created.

CORS error leaks redirect URL In Safari browsers, the URL to which a
page redirects can be read out when the CORS request results in an error.

SRI leaks response size In Safari the message embedded in the error
event when a mismatch for SRI is detected leaks the size of the response.

appearance of download bar When a resource that is opened in a new
window is served with the Content-Disposition: attachment header,
it will be downloaded by the browser. In Chromium-based browsers, this
will cause the download bar to appear, causing the height of the window
to be reduced. This download bar will remain there until it is closed by
the user.

cache probing When a resource is added to the HTTP cache, it will be
loaded much faster in comparison to retrieving the resource over the
network. When a specific document resource is loaded in an iframe or
window, this may cause specific (other) resources to be added to the cache.
The attacker can then use a timing attack to determine if any resource
was cached. Cached resources will remain in the cache until they are
invalidated, hence making this technique non-idempotent. Nevertheless,
there exist various techniques that allow an adversary to remove specific
entries from the cache.

Loophole (event loop timing) Browsers make use of event loops to han-
dle the different events that happen. When an event loop is shared by
different cross-site pages (in particular the attacker page and its target
page), the attacker page can leak the time that the other page requires to
handle events by continuously triggering events and observing the delay
between them (a larger delay indicates that an event had to be handled
for the other page).

Safari ITP leaks The Intelligent Tracking Prevention mechanism in Safari
maintains a list of domains to which several cross-site requests are made.
Whenever a cross-site request is made to a particular site, that domain
is given a strike, and after sufficient strikes from a sufficient amount of
top-level sites, the domain will be added to the ITP list. When cross-site
requests to domains on the ITP list are made, the Referer header and any
cookies will be stripped. To perform an XS-Leak attack, the attacker can
trigger the loading of the target document resource, and afterwards use
various side-channels to infer whether this caused any particular domain

to be added to the ITP list. Because the ITP list is only cleared when the
browsing history is cleared, the attack is non-idempotent. Note that this
issue has been mitigated in Safari.

detecting connections (pool limit) The global number of concurrent
connections is limited, and when it is reached, the least-recently used
connection will be terminated. An attacker can thus determine how many
new connections the rendering of the target document resource caused
by first establishing the maximum number of concurrent connections to
their server, and then detecting how many of those were closed by the
user.

WebSocket global limit Browsers set a global limit on the total number
of WebSocket connections (Chrome: 256, Firefox: 200), when this limit is
reached, no new connections can be established. This can be used to leak
whether the target page initiated a new WebSocket connection.

Payment API global limit Only a single UI pop-up for the Payment API
can be shown at the time. By probing whether it is possible to open this
UL, the attacker can determine whether the targeted page opened it.

CPU cache attacks When a document resource is rendered in the browser,
this typically results in various executions on the CPU, which in turn
results in various changes at the microarchitectural level. Prior work
has (repeatedly) shown that the trace of changes made to the last-level
cache can identify which websites are being visited, i.e., in a website
fingerprinting attack. As this technique allows distinguishing two different
execution traces of rendering a document resource, it could in theory also
be leveraged to launch XS-Leak attacks.

response timing (size) On the downstream connection between the server
and the client, the time it takes the server to send the entire response to
the client will depend on the size of the response. By measuring this time,
an adversary can distinguish small and large responses.

frame counting When the attacker has a reference to a window in which
the target resource was loaded, they can retrieve the number of frames that
are loaded in this document by accessing the frames.length property. It
is also possible to determine the number of frames in the entire frame-tree,
for instance by checking frames[0].1length for the number of iframes
embedded in the first frame.

no navigation due to download Ifaresource with the Content-Disposition

header set to attachment is loaded in an iframe or window, this will cause
the resource to be downloaded and no navigation will occur in the iframe
or window. As a result, the document’s origin remains about :blank. In
this case, the attacker can still access SOP-protected attributes, such as
window.origin, thereby allowing them to tell whether or not a download
was triggered

window.name leak By setting the window.name property, a name is given
to the current browsing context. When the document within this browsing
context is navigated to a different page, this name is retained, and thus
becomes available across origins.

client redirect (History API) The History API keeps track of which nav-
igations occurred, which is accessible through the History.length prop-
erty. An adversary can navigate a separate window to the target resource
and wait for it to finish loading, and subsequently navigate that window
to an attacker-controlled web page. By accessing the history.length
property, the attacker will be able to infer how many client-side redirects
or calls to the history.pushState() API were made by the target re-
source. Note that server-side redirects using the Location header are not
counted.

response timing (execution time) The time it takes to generate a re-
sponse might depend on the state of the user; for instance if the user is
able to access a particular resource such as a private group on a social
network site, the server might take additional steps to retrieve these, re-
sulting in a timing difference. The computation time can be observed with
a typical cross-site timing or a timeless timing attack. An attacker could
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try to inflate the measured timing difference to reduce the measurement
noise introduced by jitter.

XSSI Some websites may dynamically generate JavaScript that contains po-
tentially sensitive user information. An attacker can embed this JavaScript
in their page, and then read out the sensitive data, either by accessing a
global property, overwriting a prototype, or redefining global APIs.

request count: rate limit Some web servers impose a maximum number
of requests that can made to certain endpoints within a predefined timeslot.
Once this limit is reached, an error page will be returned. The attacker
can detect after how many requests this error page is returned to infer
how many requests were previously made as the result of rendering a
target web page.

request count: max requests per connection Web servers limit the num-
ber of requests that can be sent over a single connection; after the maxi-
mum has been reached, the connection will be closed. An attacker could

determine how many requests were needed to close the connection to
infer how many requests were previously sent.

B COOP REPORTING GAPS

The experience of deploying COOP at a large technology company
discussed in Section 8 gave insight into 3 gaps in COOP reporting

where no reports would be triggered, but enforcing COOP could
lead to a breakage. These three scenarios are included below so as
to assist other sites in deploying COOP.

B.1 Iframe Window Interactions

If a page enables COOP, all iframes on that page also get COOP
enforced. This means that if a page enables COOP and it embeds
a page that needs to open popups and interact with them, it may
break:

site.com
COOP: same-origin

/ Popup

postMessage(...

Iframe of other.com

other.com

\

B.2 Redirects
If:

(1) A page enables COOP enforcement

(2) That page redirects to a page without COOP enforcement

(3) Some other service window. opens the page with COOP enforce-
ment

(4) That service then tries to use the window reference for cross-
origin communication

Then things can break without triggering a COOP report:

B.3 Iframe Sandbox

If:

(1) A page contains an iframe with sandbox="allow-popups" but
without allow-popups-to-escape-sandbox

(2) That iframe opens a popup to example.com/endpoint

(3) example.com/endpoint enforces COOP

Then the opened popup will show a network error page with the

error CoopSandboxedIFrameCannotNavigateToCoopPage:
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